Initial commit

This commit is contained in:
Gabriel Tofvesson 2019-02-20 16:29:36 +01:00
commit 1e0a16d131
6 changed files with 1266 additions and 0 deletions

1
.gitignore vendored Normal file
View File

@ -0,0 +1 @@
""

336
malloc.asm Normal file
View File

@ -0,0 +1,336 @@
mvb .macro dst,imm
mov dst,#(:imm(2, $$symlen(imm)): & 0xffff)
movt dst,#(:imm(2, $$symlen(imm)): >> 16)
.endm
daa .macro adr,imm,c1,c2
.asg :imm(1):,TMP1
.asg :imm(2, $$symlen(imm)-1):, LIT1
.asg :adr(1):,TMP2
.asg :adr(2, $$symlen(imm)-1):, LIT2
.if $$symlen(c1) = 0
.asg r0,c1
.endif
.if $$symlen(c2) = 0
.asg r1,c2
.endif
.if $$symcmp(TMP1,"#") = 0 & $$symcmp(TMP2,"#") = 0
mvb c1,adr
mov c2,imm
str c2,[c1]
.else
.emsg "Bad Macro Parameter"
.endif
.endm
.text
.thumb
;; EXPORTS
.global gtmalloc
.global free
.global minit
.global memcpy
.global memset
.align 2
vMB .equ 0x20000204
vME .equ 0x20007FFF
u15_mask .equ 0x7FFF
SIZE_MALLOC_META .equ 0x2 ; malloc block header metadata size
SIZE_MALLOC_HEAD .equ SIZE_MALLOC_META * 2 ; malloc block header size
MALLOC_BASE .field vMB ; malloc base address
MALLOC_END .field vME ; malloc end address
MALLOC_MAX .field vME - vMB ; malloc max allocation size
;; Parameters: r0 (size)
;; Return: r1 (ptr)
;; Clobbers: r0-r6
;; INFO: Allocates a sequence of bytes at the returned address that has a
;; length that is at least equal to that which was supplied in r0.
gtmalloc:
ldr r1,MALLOC_BASE
mov r3,#u15_mask
malloc_find: ;; Find a malloc block that fits the required size
ldrh r2,[r1,#SIZE_MALLOC_META] ; Load 'current' field from header
tst r2,#0x8000
bne malloc_find_next
cmp r2,r0
bcc malloc_find_next
b malloc_found
malloc_find_next:
; Mask out 'allocated' bit
and r2,r2,r3
; Point to next header
add r1,r1,r2
add r1,#SIZE_MALLOC_HEAD
; Check if next header is valid
ldr r2,MALLOC_END
cmp r1,r2
beq malloc_error
b malloc_find
malloc_found:
; Mask out 'allocated' bit
;and r2,r2,r3
; Point to next header (in r2)
add r2,r1,r2
add r2,#SIZE_MALLOC_HEAD
; r1 = 'adr'
; r2 = 'next'
ldrh r4,[r1,#SIZE_MALLOC_META] ; Load 'current' field from 'adr' header
and r4,r3
; r4 = adr->current.size
; Check if we have to overcommit
add r0,#4
cmp r4,r0
sub r0,#4
bcc malloc_found_overcommit
; r0 = 'total_allocated'
; Check if 'adr' is the last valid header in the heap
ldr r3,MALLOC_END
cmp r2,r3
beq malloc_found_lasthead
b malloc_found_regular
malloc_found_overcommit:
mov r0,r4
; r0 = 'total_allocated'
b malloc_end
malloc_found_lasthead:
; next = adr + sizeof(malloc_head) + size;
add r2,r1,r0
add r2,r2,#SIZE_MALLOC_HEAD
ldr r3,MALLOC_END
sub r3,r3,r2
sub r3,r3,#SIZE_MALLOC_HEAD
strh r3,[r2,#SIZE_MALLOC_META]
b malloc_end
malloc_found_regular:
add r3,r1,r0
add r3,r3,#SIZE_MALLOC_HEAD
; r3 = 'new_next'
mov r4,r2
sub r4,r4,r3
sub r4,r4,#SIZE_MALLOC_HEAD
; r4 = next - (new_next + sizeof(malloc_head));
mov r6,#u15_mask
ldrh r5,[r2,#SIZE_MALLOC_META]
tst r5,#0x8000
and r5,r5,r6
bne malloc_found_regular_nextalloc
add r4,r4,r5
add r4,r4,#SIZE_MALLOC_HEAD
strh r4,[r3,#SIZE_MALLOC_META]
b malloc_found_end
malloc_found_regular_nextalloc:
strh r4,[r3,#SIZE_MALLOC_META]
strh r4,[r2]
malloc_found_end:
mov r2,r3
malloc_end: ;; Finalizes double-linked list headers and returns
orr r0,#0x8000
str r0,[r1,#SIZE_MALLOC_META]
strh r0,[r2]
add r1,#SIZE_MALLOC_HEAD
bx lr
malloc_error: ;; Return NULL
mov r1,#0
bx lr
;; Parameters: r0 (ptr)
;; Return: void
;; Clobbers: r0-r5
;; INFO: Frees a resource at a given pointer
free:
sub r0,#SIZE_MALLOC_HEAD
ldrh r1,[r0,#SIZE_MALLOC_META]
mov r2,#u15_mask
and r1,r1,r2
mov r4,r1
add r1,r1,r0
add r1,#SIZE_MALLOC_HEAD
mov r5,#0 ; Mark that next block shouldn't be changed
; Check if next head is, in fact, the end of the heap
ldr r2,MALLOC_END
cmp r1,r2
beq free_mergeprev_last
; Check if we can merge the next block with the block being freed
ldrh r3,[r1,#SIZE_MALLOC_META]
tst r3,#0x8000
bne free_mergeprev_notlast
; Add next block's size + header size to current block
mov r2,#u15_mask
and r3,r3,r2
add r4,r4,r3
add r4,r4,#SIZE_MALLOC_HEAD
b free_mergeprev_last
free_mergeprev_notlast:
ldrh r3,[r1] ; Get 'next' blocks 'previous' field
mov r5,#u15_mask
and r3,r3,r5
mov r5,r1 ; Mark that next block should be updated
free_mergeprev_last: ;; Check if we can merge the block being freed with the previous block
; Check if there is a previous block
ldr r2,MALLOC_BASE
cmp r0,r2
beq free_end
; Check if previous block is allocated or not
ldrh r1,[r0]
tst r1,#0x8000
bne free_end
; Add previous block's size to the size: we're going to make the previous block the "master" now
add r4,r4,r1
add r4,r4,#SIZE_MALLOC_HEAD
; Shift free pointer back to previous block head
sub r0,r0,r1
sub r0,r0,#SIZE_MALLOC_HEAD
free_end:
; Store size and unset 'allocated' bit
strh r4,[r0,#SIZE_MALLOC_META]
; Check if 'next' head has to be updated
cmp r5,#0
it eq
bxeq lr
strh r4,[r5]
bx lr
;; Parameters: void
;; Return: void
;; Clobbers: r0-r1
;; INFO: Clears first metadata address for use by malloc.
minit:
ldr r0,MALLOC_BASE
ldr r1,MALLOC_MAX
sub r1,#SIZE_MALLOC_HEAD
lsl r1,#16
str r1,[r0]
bx lr
;; Parameters: r0 (const ptr), r1 (ptr), r2 (len)
;; Return: void
;; Clobbers: r0-r3
;; INFO: Copies (r2) bytes from r0 to r1.
memcpy: ;; Initialization
add r3,r0,r2
memcpy_loop: ;; Word-wise data copy
sub r2,r3,r0
cmp r2,#4
bcc memcpy_small
ldr r2,[r0]
str r2,[r1]
add r0,#4
add r1,#4
b memcpy_loop
memcpy_small: ;; Sub-word data copy
cmp r2,#0
it eq
bxeq lr
cmp r2,#1
ittt eq
ldrbeq r3,[r0]
strbeq r3,[r1]
bxeq lr
ldrh r3,[r0]
strh r3,[r1]
cmp r2,#3
ittt eq
ldrbeq r3,[r0,#2]
strbeq r3,[r1,#2]
bxeq lr
ldrh r3,[r0,#2]
strh r3,[r1,#2]
bx lr
;; Parameters: r0 (ptr), r1 (byte), r2 (len)
;; Return: void
;; Clobbers: r0-r3
;; INFO: Overwrites 'r2' bytes at the address specified by r0 with the lowest
;; byte in r1.
memset:
; Copy lowest byte in r1 to all 4 bytes in r1
and r1,#0xFF
mov r3,#0x101
movt r3,#0x101
mul r1,r1,r3
; Compute end of write range
add r3,r0,r2
memset_loop:
sub r2,r3,r0
cmp r2,#4
bcc memset_small
str r1,[r0]
add r0,#4
b memset_loop
memset_small:
cmp r2,#1
it cc
bxcc lr
itt eq
strbeq r1,[r0]
bxeq lr
strh r1,[r0]
cmp r2,#3
itt eq
strbeq r1,[r0,#2]
bxeq lr
strh r1,[r0,#2]
bx lr

54
nvmem.asm Normal file
View File

@ -0,0 +1,54 @@
; Non-volatile memory routines
FLASH_base .field 0x400FD000 ; Flash control base address
SYSCONF .field 0x400FE000 ; System memory control base address
WRKEY0 .field 0x71D5 ; Write key when BOOTCFG address KEY bit is 0
WRKEY1 .field 0xA442 ; Write key when BOOTCFG address KEY bit is 1
FLASH_END .field 0x3FFFF ; End of flash memory region
; Flash control offsets
FMA .equ 0x0 ; Target address (0x0 - 0x3FFFF)
FMD .equ 0x4 ; Data
FMC .equ 0x8 ; Direct (single) write control - Writes 1 word
FMC2 .equ 0x20 ; Buffered (wide) write control - Writes up to 32 words
FWB_base .equ 0x100 ; Buffered data base offset (max: 0x17C)
BOOTCFG .equ 0x1D0 ; Boot configuration address offset
.text
.thumb
.global flashtest
.align 2
;; Writes a value near then end of the flash region
;; Doesn't seem to survive resets, though
;; TODO: Investigate reset-triggered FLASH clearing
flashtest:
;; Read word
ldr r1,FLASH_END
sub r1,r1,#8
ldr r4,[r1] ; Read last word
;; Write word
; Write target address
ldr r0,FLASH_base
str r1,[r0,#FMA]
; Write data to add to FLASH
mvn r1,r4
str r1,[r0,#FMD]
; Trigger write
ldr r1,WRKEY0 ; TODO: Select appropriate WRKEY based on BOOTCFG
lsl r1,#0x10
orr r1,#1
str r1,[r0,#FMC]
flashtest_await_write:
ldrb r1,[r0,#FMC]
tst r1,#1
beq flashtest_complete
flashtest_aight:
b flashtest_await_write
flashtest_complete:
bx lr

529
pthread.asm Normal file
View File

@ -0,0 +1,529 @@
; Code-style key:
; [instruction/definition] ; Single-line description
; ;; Section label
; ; Code-block label
;
;
;
; -- "Function" definition
; ;; Parameters: rX (type)
; ;; Return: rX (type), [flags] (reason)
; ;; Clobbers: rX-rY
; ;; INFO: General description of what the function does
;
; -- Note that functions should declare return values as clobbered.
;
;
; -- Function naming scheme:
;
; function: ;; Function's entry point
; [insn]
; function_localjumplabel: ;; Local jump label
; [insn]
; function_localjumplabel_sublabel: ;; Jump label that is a part of (or a child-label of) function_localjumplabel. (Think nested block-statements)
; [insn]
; function_end: ;; End of function (if explicit declaration is necessary)
; [insn]
mvb .macro dst,imm
mov dst,#(:imm(2, $$symlen(imm)): & 0xffff)
movt dst,#(:imm(2, $$symlen(imm)): >> 16)
.endm
daa .macro adr,imm,c1,c2
.asg :imm(1):,TMP1
.asg :imm(2, $$symlen(imm)-1):, LIT1
.asg :adr(1):,TMP2
.asg :adr(2, $$symlen(imm)-1):, LIT2
.if $$symlen(c1) = 0
.asg r0,c1
.endif
.if $$symlen(c2) = 0
.asg r1,c2
.endif
.if $$symcmp(TMP1,"#") = 0 & $$symcmp(TMP2,"#") = 0
mvb c1,adr
mov c2,imm
str c2,[c1]
.else
.emsg "Bad Macro Parameter"
.endif
.endm
print .macro msg
adr r0,msg
bl strlen
adr r0,msg
bl printstring
.endm
; UART stuff
RCGCUART .equ 0x400FE618
RCGCGPIO .equ 0x400fe608
UART0_UARTIBRD .equ 0x4000c024
UART0_UARTFBRD .equ 0x4000c028
UART0_UARTLCRH .equ 0x4000c02c
UART0_UARTCTL .equ 0x4000c030
UART0_UARTFR .equ 0x4000c018
UART0_UARTDR .equ 0x4000c000
GPIOA_GPIOAFSEL .equ 0x40004420
GPIOA_GPIODEN .equ 0x4000451c
STRST .equ 0x989680
CPERIPH .equ 0xe000e000
STCTL .equ 0x010
STRLD .equ 0x014
STCUR .equ 0x18
VBASE .equ 0x20000000 ; RAM virtual memory base address
STACK_BASE .equ 0x20000200
HEAP_END .equ 0x20007FFF
TMPTR .field 0x20000200 ; Thread MUX config pointer address
TMS .equ 0x0 ; Thread MUX thread count
TMC .equ 0x4 ; Thread MUX current thread
TMF .equ 0x8 ; Thread MUX flag offset
TMV .equ 0xC ; Thread MUX address vector base address
TCOUNT_MAX .equ 0x20 ; Max thread vector count allowed
TFRAME_SIZE .equ 0x4 ; Thread MUX frame size
;TSTACK_PTR .equ 0x4 ; Thread stack pointer
;TEXEC_PTR .equ 0x0 ; Thread execution address
TEST_MESSAGE: .string "Hello, thread",13,10,0
.text
.thumb
;; EXPORTS
.global main
.global IntSysTick
.global startthread
.global threadexit
.global threadlock
.global threadunlock
;; IMPORTS
;.global flashtest
.global gtmalloc
.global minit
.global free
.global memcpy
.global memset
.align 2
main:
; Initialize peripherals
bl inituart
; Initialize gtmalloc range
bl minit
; Allocate TMUX data
mov r0,#(0xC + (TCOUNT_MAX * TFRAME_SIZE))
bl gtmalloc
mov r0,r1
; Clear data pointed to by r0
push {r0}
mov r2,#(0xC + (TCOUNT_MAX * TFRAME_SIZE))
mov r1,#0
bl memset
pop {r0}
; Initialize Thread MUX Size value to 1 (main thread)
ldr r1,TMPTR
str r0,[r1]
mov r1,#1
str r1,[r0,#TMS]
; Initialize Thread MUX Current (int) to 0
mov r1,#0
str r1,[r0,#TMC]
; Thread execution address and stack are inferred from the blank frame
;str r1,[r0,#TMV]
;str r1,[r0,#(TMV + 4)]
; Enable SysTick (and thereby the thread management subsystem)
cpsid i ; disable interrupts
mvb r1,#CPERIPH
mvb r0,#STRST ; Set up SysTick to start counting down from STRST (max 24 bits)
str r0,[r1,#STRLD]
str r0,[r1,#STCUR]
ldr r0,[r1,#STCTL]
orr r0,#0x7 ; Enable system interrupt, set source to system clock (80 MHz), enable timer
str r0,[r1,#STCTL]
cpsie i ; enable interrupts
; Run thread test
adr r0,test_thread
bl startthread
loop: ; Wait forever
b loop
.align 4
test_thread:
print TEST_MESSAGE
b threadexit ; No need to bl since this is the end of the thread anyway
.align 2
;; Parameters: r0 (thread routine address)
;; Return: r0 (non-zero if succeeded)
;; Clobbers: r0-r6
;; INFO: This adds a new entry to the thread multiplexing vector. In the case
;; where (for some reason) there is an attempt >=2**32 threads, r0 will
;; be returned as 0 to indicate that an overflow was caught. This also
;; implies that the thread wasn't created, but that the program will
;; continue to execute as normal.
startthread:
push {r0,lr}
bl threadlock ; Ensure changes to TMUX data don't change while we are updating them
ldr r0,[r1,#TMS] ; Get current thread count
mov r2,r0 ; Duplicate it for future use
add r0,r0,#1
cmp r0,#TCOUNT_MAX
beq startthread_end ; If C-flag is set, then r0 == 0 and no more threads can be created: return
str r0,[r1,#TMS]
mov r0,#TFRAME_SIZE
mul r2,r2,r0 ; Multiply r2 by TFRAME_SIZE to get address offset for next thread address entry
pop {r0}
push {r1, r2}
bl initthreadstack ; Allocate a blank (but valid) thread stack
pop {r1, r2} ; Restore addresses
add r1,r1,r2
add r1,r1,#TMV
str r4,[r1] ; Store stack data pointer to threa frame
startthread_end:
bl threadunlock
pop {pc}
;; Parameters: void
;; Return: void
;; Clobbers: r0-r1
threadlock:
ldr r1,TMPTR
ldr r1,[r1]
ldr r0,[r1,#TMF]
orr r0,#1
str r0,[r1,#TMF]
bx lr
;; Parameters: void
;; Return: void
;; Clobbers: r0-r2
threadunlock:
ldr r1,TMPTR
ldr r1,[r1]
mvn r2,#1
ldr r0,[r1,#TMF]
and r0,r0,r2
str r0,[r1,#TMF]
bx lr
;; Parameters: void
;; Return: doesn't
;; Clobbers: N/A
threadexit:
; Mark this thread for termination by the thread handler
ldr r1,TMPTR
ldr r1,[r1]
; Thread0 cannot be killed; just sit in an infinite loop instead
ldr r0,[r1,#TMC]
cmp r0,#0
beq threadexit_wait
ldr r0,[r1,#TMF]
orr r0,#2
str r0,[r1,#TMF]
; Set SysTick counter to 0 (trigger SysTick interrupt)
mvb r1,#CPERIPH
mov r0,#0
str r0,[r1]
threadexit_wait:
; Wait for imminent SysTick interrupt to take over
b threadexit_wait
.align 2
IntSysTick:
; CPU pushes some registers here (before ISR state is set and PC is changed):
; push {r0-r3, ip, lr, pc, CPSR}
; Check if we are interrupting an interrupt
mvn r0,#6
cmp r0,lr
it ne
bxne lr
; Check if there are any threads to multiplex. If not, just return
ldr r0,TMPTR
ldr r0,[r0]
ldr r1,[r0,#TMS] ; Load current thread count
cmp r1,#1
it eq
bxeq lr
; Check if thread-lock flag is set. If so, return to active thread
ldr r2,[r0,#TMF]
tst r2,#1
it ne
bxne lr
; Check if thread-kill flag is set; if so, remove thread from address vector
tst r2,#2
beq IntSysTick_save
ldr r2,[r0,#TMC]
sub r1,#1
cmp r1,r2 ; Check if we are going to loop back to Thread1 after ISR
bne IntSysTick_fulldelete
sub r2,#1
str r2,[r0,#TMC]
str r1,[r0,#TMS]
b IntSysTick_loadnext
IntSysTick_fulldelete:
; Move future threads down to this one's position
push {r0-r3, lr}
; Compute current frame offset and how many frames to copy
mov r3,r1
mov r1,r2
mov r2,r3
mov r3,#TFRAME_SIZE
sub r2,r2,r1
mul r1,r3
mul r2,r3
; Get thread vector address
add r0,#TMV
; Offset base vector address by the current frame address
add r1,r1,r0
; Get address of next frame
add r0,r1,#TFRAME_SIZE
; Copy future frames to current frame address
bl memcpy
pop {r0-r3, lr}
b IntSysTick_loadnext
IntSysTick_save:
;; Store the current stack
; Compute frame offset and save link register value as current frame execution address pointer
mov r3,#TFRAME_SIZE
mul r2,r2,r3
add r2,r2,r0
add r2,r2,#TMV
mov r3,r0
push {r4-r11} ; Push all the otherwise un-pushed registers (except SP because it's special)
mvb r0,#STACK_BASE
sub r0,r0,sp ; Compute stack size that needs to be saved
add r0,r0,#4 ; Include SP in stack metadata
push {r0, r2, r3}
bl gtmalloc
pop {r0, r2, r3}
; r0 = gtmalloc size
; r1 = gtmalloc ptr
; r2 = pointer to current thread frame
; r3 = thread control base address
push {r0-r3}
sub r0,#4
mov r2,r0
mov r0,sp
add r0,r0,#16
add r1,r1,#4
; Copy all stack values except sp
bl memcpy
pop {r0-r3}
; Save sp to thread stack copy
str sp,[r1]
; Save thread stack copy pointer to frame
str r1,[r2]
IntSysTick_loadnext:
;; Load the next stack
; Load a fresh thread control pointer
ldr r0,TMPTR
ldr r0,[r0]
ldr r2,[r0,#TMC]
ldr r1,[r0,#TMS]
sub r1,r1,#1
cmp r1,r2 ; Check if we are going to loop back to Thread0 after ISR
ite eq
eoreq r2,r2
addne r2,#1
str r2,[r0,#TMC]
; Check frame integrity
mov r3,#TFRAME_SIZE
mul r2,r3
add r2,r2,r0
add r2,r2,#TMV
ldr r0,[r2] ; Load stack data pointer for thread to be run
ldr r1,[r0] ; Copy thread's stack pointer into r1
mov sp,r1 ; Activate thread's stack
; Copy thread's stack into active stack region
push {r0-r2}
mvb r2,#STACK_BASE
sub r2,r2,r1
add r0,#4
bl memcpy
pop {r0-r2}
push {r2}
bl free ; Free thread stack-copy pointer
pop {r2}
mvn lr,#6 ; lr = 0xFFFFFFF9 // address informs processor that it should read return address from stack
pop {r4-r11} ; Pop values that aren't auto-popped
;; Resume thread at the given address
bx lr
;; Parameters: r0 (str), r1 (uint32_t)
;; Return: void
;; Clobbers: r0-r5
;; INFO: Prints a string of a given length to UART0 serial bus
printstring: ; void printstring(char * r0, uint32_t r1){
mvb r2,#UART0_UARTFR ; r2 = UART0_UARTFR; // UART0 Flags
mvb r3,#UART0_UARTDR ; r3 = UART0_UARTDR; // UART0 Data address
add r1,r0 ; r1 += r0; // r1 now holds the address of the first byte after the string
printstring_loop: ; while (true) {
cmp r0,r1 ; if(r0 == r1) // Check if more bytes can be read
beq printstring_end ; break;
ldrb r4,[r0],#1 ; r4 = (char) *(r0++); // Put next char in r4
printstring_printchar_loop: ; while(true){
ldr r5,[r2] ; r5 = *r2; // Read UART0 status flags
ands r5,r5,#0x20 ; r5 &= 0x20; // Only get 6th flag bit
bne printstring_printchar_loop ; if(r5 != 0x20) continue; // If bit isn't set, UART0 isn't done flushing
; break;
; }
str r4,[r3] ; *r3 = r4; // Write character to UART0 data address
b printstring_loop ; continue;
printstring_end: ; }
bx lr ; return;
; }
;; Parameters: r0 (str)
;; Return: r1 (uint32_t)
;; Clobbers: r1, r2
;; INFO: Computes the length of a given C-style string.
strlen: ; uint32_t strlen(char * r0) {
mov r1,r0 ; r1 = r0;
strlen_loop: ; while(true){
ldrb r2,[r0], #1 ; r2 = (char) *(r0++);
cmp r2,#0 ; if(r2 != 0)
bne strlen_loop ; continue;
strlen_endloop: ; }
sub r1,r0,r1 ; r1 = r0 - r1;
bx lr ; return r1;
; }
;; Parameters: void
;; Return: void
;; Clobbers: r0, r1
;; INFO: Initialize UART0 communication bus at 115200 baud.
inituart:
daa #RCGCUART,#0x01 ; Koppla in serieport
mvb r1,#RCGCGPIO ; Koppla in GPIO port A
ldr r0,[r1]
orr r0,r0,#0x01
str r0,[r1]
nop ; vänta lite
nop
nop
daa #GPIOA_GPIOAFSEL,#0x03 ; pinnar PA0 och PA1 som serieport
daa #GPIOA_GPIODEN,#0x03 ; Digital I/O på PA0 och PA1
daa #UART0_UARTIBRD,#0x08 ; Sätt hastighet till 115200 baud
daa #UART0_UARTFBRD,#44 ; Andra värdet för att få 115200 baud
daa #UART0_UARTLCRH,#0x60 ; 8 bit, 1 stop bit, ingen paritet, ingen FIFO
daa #UART0_UARTCTL,#0x0301 ; Börja använda serieport
bx lr
;; Parameters: r0 (thread pc)
;; Return: r4 (ptr)
;; Clobbers: r0-r6
;; INFO: Generate a blank stack frame
initthreadstack:
push {r0, lr} ; Save argument and return address
; Allocate thread stack
mov r0,#0x44
bl gtmalloc
mov r4,r1
; Clear thread stack data
mov r2,#0x38
mov r0,r1
add r0,#4
mov r1,#0
bl memset
pop {r0} ; Restore argument
; Save thread's PC (argument) to blank stack
str r0,[r4,#0x3C]
; Save a valid CPSR to the blank stack
mvb r0,#0x81000000
str r0,[r4,#0x40]
; Save a valid stack pointer
mvb r0,#(STACK_BASE - 0x40)
str r0,[r4]
pop {pc} ; Fast return

45
tm4c1231h6pm.cmd Normal file
View File

@ -0,0 +1,45 @@
/******************************************************************************
*
* Default Linker Command file for the Texas Instruments TM4C1231H6PM
*
* This is derived from revision 15071 of the TivaWare Library.
*
*****************************************************************************/
--retain=g_pfnVectors
MEMORY
{
FLASH (RX) : origin = 0x00000000, length = 0x00040000
SRAM (RWX) : origin = 0x20000000, length = 0x00008000
}
/* The following command line options are set as part of the CCS project. */
/* If you are building using the command line, or for some reason want to */
/* define them here, you can uncomment and modify these lines as needed. */
/* If you are using CCS for building, it is probably better to make any such */
/* modifications in your CCS project and leave this file alone. */
/* */
/* --heap_size=0 */
/* --stack_size=256 */
/* --library=rtsv7M4_T_le_eabi.lib */
/* Section allocation in memory */
SECTIONS
{
.intvecs: > 0x00000000
.text : > FLASH
.const : > FLASH
.cinit : > FLASH
.pinit : > FLASH
.init_array : > FLASH
.vtable : > 0x20000000
.data : > SRAM
.bss : > SRAM
.sysmem : > SRAM
.stack : > SRAM
}
__STACK_TOP = __stack + 512;

301
tm4c1231h6pm_startup_ccs.c Normal file
View File

@ -0,0 +1,301 @@
//*****************************************************************************
//
// Startup code for use with TI's Code Composer Studio.
//
// Copyright (c) 2011-2014 Texas Instruments Incorporated. All rights reserved.
// Software License Agreement
//
// Software License Agreement
//
// Texas Instruments (TI) is supplying this software for use solely and
// exclusively on TI's microcontroller products. The software is owned by
// TI and/or its suppliers, and is protected under applicable copyright
// laws. You may not combine this software with "viral" open-source
// software in order to form a larger program.
//
// THIS SOFTWARE IS PROVIDED "AS IS" AND WITH ALL FAULTS.
// NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT
// NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. TI SHALL NOT, UNDER ANY
// CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
// DAMAGES, FOR ANY REASON WHATSOEVER.
//
//*****************************************************************************
#include <stdint.h>
//*****************************************************************************
//
// Forward declaration of the default fault handlers.
//
//*****************************************************************************
void ResetISR(void);
static void NmiSR(void);
static void FaultISR(void);
static void IntDefaultHandler(void);
extern void IntSysTick(void);
//*****************************************************************************
//
// External declaration for the reset handler that is to be called when the
// processor is started
//
//*****************************************************************************
extern void _c_int00(void);
//*****************************************************************************
//
// Linker variable that marks the top of the stack.
//
//*****************************************************************************
extern uint32_t __STACK_TOP;
//*****************************************************************************
//
// External declarations for the interrupt handlers used by the application.
//
//*****************************************************************************
// To be added by user
//*****************************************************************************
//
// The vector table. Note that the proper constructs must be placed on this to
// ensure that it ends up at physical address 0x0000.0000 or at the start of
// the program if located at a start address other than 0.
//
//*****************************************************************************
#pragma DATA_SECTION(g_pfnVectors, ".intvecs")
void (* const g_pfnVectors[])(void) =
{
(void (*)(void))((uint32_t)&__STACK_TOP),
// The initial stack pointer
ResetISR, // The reset handler
NmiSR, // The NMI handler
FaultISR, // The hard fault handler
IntDefaultHandler, // The MPU fault handler
IntDefaultHandler, // The bus fault handler
IntDefaultHandler, // The usage fault handler
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
IntDefaultHandler, // SVCall handler
IntDefaultHandler, // Debug monitor handler
0, // Reserved
IntDefaultHandler, // The PendSV handler
IntSysTick, // The SysTick handler
IntDefaultHandler, // GPIO Port A
IntDefaultHandler, // GPIO Port B
IntDefaultHandler, // GPIO Port C
IntDefaultHandler, // GPIO Port D
IntDefaultHandler, // GPIO Port E
IntDefaultHandler, // UART0 Rx and Tx
IntDefaultHandler, // UART1 Rx and Tx
IntDefaultHandler, // SSI0 Rx and Tx
IntDefaultHandler, // I2C0 Master and Slave
IntDefaultHandler, // PWM Fault
IntDefaultHandler, // PWM Generator 0
IntDefaultHandler, // PWM Generator 1
IntDefaultHandler, // PWM Generator 2
IntDefaultHandler, // Quadrature Encoder 0
IntDefaultHandler, // ADC Sequence 0
IntDefaultHandler, // ADC Sequence 1
IntDefaultHandler, // ADC Sequence 2
IntDefaultHandler, // ADC Sequence 3
IntDefaultHandler, // Watchdog timer
IntDefaultHandler, // Timer 0 subtimer A
IntDefaultHandler, // Timer 0 subtimer B
IntDefaultHandler, // Timer 1 subtimer A
IntDefaultHandler, // Timer 1 subtimer B
IntDefaultHandler, // Timer 2 subtimer A
IntDefaultHandler, // Timer 2 subtimer B
IntDefaultHandler, // Analog Comparator 0
IntDefaultHandler, // Analog Comparator 1
IntDefaultHandler, // Analog Comparator 2
IntDefaultHandler, // System Control (PLL, OSC, BO)
IntDefaultHandler, // FLASH Control
IntDefaultHandler, // GPIO Port F
IntDefaultHandler, // GPIO Port G
IntDefaultHandler, // GPIO Port H
IntDefaultHandler, // UART2 Rx and Tx
IntDefaultHandler, // SSI1 Rx and Tx
IntDefaultHandler, // Timer 3 subtimer A
IntDefaultHandler, // Timer 3 subtimer B
IntDefaultHandler, // I2C1 Master and Slave
IntDefaultHandler, // Quadrature Encoder 1
IntDefaultHandler, // CAN0
IntDefaultHandler, // CAN1
0, // Reserved
0, // Reserved
IntDefaultHandler, // Hibernate
IntDefaultHandler, // USB0
IntDefaultHandler, // PWM Generator 3
IntDefaultHandler, // uDMA Software Transfer
IntDefaultHandler, // uDMA Error
IntDefaultHandler, // ADC1 Sequence 0
IntDefaultHandler, // ADC1 Sequence 1
IntDefaultHandler, // ADC1 Sequence 2
IntDefaultHandler, // ADC1 Sequence 3
0, // Reserved
0, // Reserved
IntDefaultHandler, // GPIO Port J
IntDefaultHandler, // GPIO Port K
IntDefaultHandler, // GPIO Port L
IntDefaultHandler, // SSI2 Rx and Tx
IntDefaultHandler, // SSI3 Rx and Tx
IntDefaultHandler, // UART3 Rx and Tx
IntDefaultHandler, // UART4 Rx and Tx
IntDefaultHandler, // UART5 Rx and Tx
IntDefaultHandler, // UART6 Rx and Tx
IntDefaultHandler, // UART7 Rx and Tx
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
IntDefaultHandler, // I2C2 Master and Slave
IntDefaultHandler, // I2C3 Master and Slave
IntDefaultHandler, // Timer 4 subtimer A
IntDefaultHandler, // Timer 4 subtimer B
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
IntDefaultHandler, // Timer 5 subtimer A
IntDefaultHandler, // Timer 5 subtimer B
IntDefaultHandler, // Wide Timer 0 subtimer A
IntDefaultHandler, // Wide Timer 0 subtimer B
IntDefaultHandler, // Wide Timer 1 subtimer A
IntDefaultHandler, // Wide Timer 1 subtimer B
IntDefaultHandler, // Wide Timer 2 subtimer A
IntDefaultHandler, // Wide Timer 2 subtimer B
IntDefaultHandler, // Wide Timer 3 subtimer A
IntDefaultHandler, // Wide Timer 3 subtimer B
IntDefaultHandler, // Wide Timer 4 subtimer A
IntDefaultHandler, // Wide Timer 4 subtimer B
IntDefaultHandler, // Wide Timer 5 subtimer A
IntDefaultHandler, // Wide Timer 5 subtimer B
IntDefaultHandler, // FPU
0, // Reserved
0, // Reserved
IntDefaultHandler, // I2C4 Master and Slave
IntDefaultHandler, // I2C5 Master and Slave
IntDefaultHandler, // GPIO Port M
IntDefaultHandler, // GPIO Port N
IntDefaultHandler, // Quadrature Encoder 2
0, // Reserved
0, // Reserved
IntDefaultHandler, // GPIO Port P (Summary or P0)
IntDefaultHandler, // GPIO Port P1
IntDefaultHandler, // GPIO Port P2
IntDefaultHandler, // GPIO Port P3
IntDefaultHandler, // GPIO Port P4
IntDefaultHandler, // GPIO Port P5
IntDefaultHandler, // GPIO Port P6
IntDefaultHandler, // GPIO Port P7
IntDefaultHandler, // GPIO Port Q (Summary or Q0)
IntDefaultHandler, // GPIO Port Q1
IntDefaultHandler, // GPIO Port Q2
IntDefaultHandler, // GPIO Port Q3
IntDefaultHandler, // GPIO Port Q4
IntDefaultHandler, // GPIO Port Q5
IntDefaultHandler, // GPIO Port Q6
IntDefaultHandler, // GPIO Port Q7
IntDefaultHandler, // GPIO Port R
IntDefaultHandler, // GPIO Port S
IntDefaultHandler, // PWM 1 Generator 0
IntDefaultHandler, // PWM 1 Generator 1
IntDefaultHandler, // PWM 1 Generator 2
IntDefaultHandler, // PWM 1 Generator 3
IntDefaultHandler // PWM 1 Fault
};
//*****************************************************************************
//
// This is the code that gets called when the processor first starts execution
// following a reset event. Only the absolutely necessary set is performed,
// after which the application supplied entry() routine is called. Any fancy
// actions (such as making decisions based on the reset cause register, and
// resetting the bits in that register) are left solely in the hands of the
// application.
//
//*****************************************************************************
void
ResetISR(void)
{
//
// Jump to the CCS C initialization routine. This will enable the
// floating-point unit as well, so that does not need to be done here.
//
__asm(" .global _c_int00\n"
" b.w _c_int00");
}
//*****************************************************************************
//
// This is the code that gets called when the processor receives a NMI. This
// simply enters an infinite loop, preserving the system state for examination
// by a debugger.
//
//*****************************************************************************
static void
NmiSR(void)
{
//
// Enter an infinite loop.
//
while(1)
{
}
}
//*****************************************************************************
//
// This is the code that gets called when the processor receives a fault
// interrupt. This simply enters an infinite loop, preserving the system state
// for examination by a debugger.
//
//*****************************************************************************
static void
FaultISR(void)
{
//
// Enter an infinite loop.
//
while(1)
{
}
}
//*****************************************************************************
//
// This is the code that gets called when the processor receives an unexpected
// interrupt. This simply enters an infinite loop, preserving the system state
// for examination by a debugger.
//
//*****************************************************************************
static void
IntDefaultHandler(void)
{
//
// Go into an infinite loop.
//
while(1)
{
}
}