GabrielTofvesson 100f5a32be Major changes
Refactorings:
  * BinaryCollector -> BitWriter
  * BinaryDistributor -> BitReader

Additions:
  * Output class for making serverside output pretty and more readable
  * Better RSA keys (private keys withheld)

Changes:
  * Minor changes to all views and their rendering
  * Added corrective resizing to resize listener to prevent errant window sizes
  * Removed "default" language in favour of a purely priority-based system
  * NetContext now attempts to verify server identity before continuing to next context
  * Simplified common operations in Context
  * Minor updates to some layouts
  * Completed translations for english and swedish
  * Promise system now supports internal processing before notifying original caller
  * Bank interactor methods are now async
  * Added support for multiple accounts per user (separate repositories for money)
  * Removed test code from client program
  * Updated Database to support multiple accounts
  * Reimplemented RSA on the server side purely as an identity verification system on top of the networking layer (rather than part of the layer)
  * Added Account management endpoints
  * Added full support for System-sourced transactions
  * Added Account availability endpoint
  * Added verbose error responses
2018-04-26 00:24:58 +02:00

176 lines
6.1 KiB
C#

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace Tofvesson.Crypto
{
/// <summary>
/// Secure Hashing Alorithm implementations
/// </summary>
public static class SHA
{
public static byte[] SHA1(byte[] message)
{
// Initialize buffers
uint h0 = 0x67452301;
uint h1 = 0xEFCDAB89;
uint h2 = 0x98BADCFE;
uint h3 = 0x10325476;
uint h4 = 0xC3D2E1F0;
// Pad message
int ml = message.Length + 1;
byte[] msg = new byte[ml + ((960 - (ml*8 % 512)) % 512)/8 + 8];
Array.Copy(message, msg, message.Length);
msg[message.Length] = 0x80;
long len = message.Length * 8;
for (int i = 0; i < 8; ++i) msg[msg.Length - 1 - i] = (byte)((len >> (i*8)) & 255);
//Support.WriteToArray(msg, message.Length * 8, msg.Length - 8);
//for (int i = 0; i <4; ++i) msg[msg.Length - 5 - i] = (byte)(((message.Length*8) >> (i * 8)) & 255);
int chunks = msg.Length / 64;
// Split block into words (allocated out here to prevent massive garbage buildup)
uint[] w = new uint[80];
// Perform hashing for each 512-bit block
for (int i = 0; i<chunks; ++i)
{
// Compute initial source data from padded message
for(int j = 0; j<16; ++j)
w[j] |= (uint) ((msg[i * 64 + j * 4] << 24) | (msg[i * 64 + j * 4 + 1] << 16) | (msg[i * 64 + j * 4 + 2] << 8) | (msg[i * 64 + j * 4 + 3] << 0));
// Expand words
for(int j = 16; j<80; ++j)
w[j] = Rot(w[j - 3] ^ w[j - 8] ^ w[j - 14] ^ w[j - 16], 1);
// Initialize chunk-hash
uint
a = h0,
b = h1,
c = h2,
d = h3,
e = h4;
// Do hash rounds
for (int t = 0; t<80; ++t)
{
uint tmp = Rot(a, 5) + func(t, b, c, d) + e + K(t) + w[t];
e = d;
d = c;
c = Rot(b, 30);
b = a;
a = tmp;
}
// Add to result
h0 += a;
h1 += b;
h2 += c;
h3 += d;
h4 += e;
}
return Support.WriteContiguous(new byte[20], 0, Support.SwapEndian(h0), Support.SwapEndian(h1), Support.SwapEndian(h2), Support.SwapEndian(h3), Support.SwapEndian(h4));
}
public struct SHA1Result
{
public uint i0, i1, i2, i3, i4;
public byte Get(int idx) => (byte)((idx < 4 ? i0 : idx < 8 ? i1 : idx < 12 ? i2 : idx < 16 ? i3 : i4)>>(8*(idx%4)));
}
public static SHA1Result SHA1_Opt(byte[] message)
{
SHA1Result result = new SHA1Result
{
// Initialize buffers
i0 = 0x67452301,
i1 = 0xEFCDAB89,
i2 = 0x98BADCFE,
i3 = 0x10325476,
i4 = 0xC3D2E1F0
};
// Pad message
long len = message.Length * 8;
int
ml = message.Length + 1,
max = ml + ((960 - (ml * 8 % 512)) % 512) / 8 + 8;
// Replaces the allocation of a lot of bytes
byte GetMsg(int idx)
{
if (idx < message.Length)
return message[idx];
else if (idx == message.Length)
return 0x80;
else if (max - idx <= 8)
return (byte)((len >> ((max - 1 - idx) * 8)) & 255);
return 0;
}
int chunks = max / 64;
// Replaces the recurring allocation of 80 uints
uint ComputeIndex(int block, int idx)
{
if (idx < 16)
return (uint)((GetMsg(block * 64 + idx * 4) << 24) | (GetMsg(block * 64 + idx * 4 + 1) << 16) | (GetMsg(block * 64 + idx * 4 + 2) << 8) | (GetMsg(block * 64 + idx * 4 + 3) << 0));
else
return Rot(ComputeIndex(block, idx - 3) ^ ComputeIndex(block, idx - 8) ^ ComputeIndex(block, idx - 14) ^ ComputeIndex(block, idx - 16), 1);
}
// Perform hashing for each 512-bit block
for (int i = 0; i < chunks; ++i)
{
// Initialize chunk-hash
uint
a = result.i0,
b = result.i1,
c = result.i2,
d = result.i3,
e = result.i4;
// Do hash rounds
for (int t = 0; t < 80; ++t)
{
uint tmp = Rot(a, 5) + func(t, b, c, d) + e + K(t) + ComputeIndex(i, t);
e = d;
d = c;
c = Rot(b, 30);
b = a;
a = tmp;
}
result.i0 += a;
result.i1 += b;
result.i2 += c;
result.i3 += d;
result.i4 += e;
}
result.i0 = Support.SwapEndian(result.i0);
result.i1 = Support.SwapEndian(result.i1);
result.i2 = Support.SwapEndian(result.i2);
result.i3 = Support.SwapEndian(result.i3);
result.i4 = Support.SwapEndian(result.i4);
return result;
}
private static uint func(int t, uint b, uint c, uint d) =>
t < 20 ? (b & c) | ((~b) & d) :
t < 40 ? b ^ c ^ d :
t < 60 ? (b & c) | (b & d) | (c & d) :
/*t<80*/ b ^ c ^ d;
private static uint K(int t) =>
t < 20 ? 0x5A827999 :
t < 40 ? 0x6ED9EBA1 :
t < 60 ? 0x8F1BBCDC :
/*t<80*/ 0xCA62C1D6 ;
private static uint Rot(uint val, int by) => (val << by) | (val >> (32 - by));
}
}