BankProject/Common/Cryptography/EllipticCurve.cs
GabrielTofvesson 41e8d969ed Refactorings:
* Moved encryption algorithms into a folder
* Sorted networking into separate files

Additions:
* Created Elliptic Curve encryption implementation
* Generalized the key exchange implementation
    - Implemented Diffie-Hellman key exchange
    - Implemented Elliptic Curve Diffie-Hellman key exchange
* Started implementing binary data compressor

Changes:
* Changed NetClient and NetServer to use IKeyExchange for initial AES key exchange instead of RSA (for optimization)
* Adapted TextView implementation to properly support optional borders
* Fed InputView issue caused due to border rendering change
* Fixed and simplified Rectangle computations
* Fixed errant naming in Session layout file
* Fixed errant i18n naming in Session layout file
* Fixed resize background rendering issue in ConsoleController
* Fully implemented ListView (needs testing)
* Updated BankInteractor and server to use ECDH-E with Curve25519

Removals:
* Removed identity verification from NetClient (identities checks should be performed as a layer on top of NetClient/NetServer, not as part of it)
2018-04-09 03:26:00 +02:00

200 lines
6.9 KiB
C#

using System;
using System.Collections.Generic;
using System.Linq;
using System.Numerics;
using System.Text;
using System.Threading.Tasks;
using Tofvesson.Crypto;
namespace Common.Cryptography
{
public class Point
{
public static readonly Point POINT_AT_INFINITY = new Point();
public BigInteger X { get; private set; }
public BigInteger Y { get; private set; }
private bool pai = false;
public Point(BigInteger x, BigInteger y)
{
X = x;
Y = y;
}
private Point() { pai = true; } // Accessing corrdinates causes undocumented behaviour
public override string ToString()
{
return pai ? "(POINT_AT_INFINITY)" : "(" + X + ", " + Y + ")";
}
}
public class EllipticCurve
{
public enum CurveType { Weierstrass, Montgomery }
protected readonly BigInteger a, b, modulo;
protected readonly CurveType type;
public EllipticCurve(BigInteger a, BigInteger b, BigInteger modulo, CurveType type = CurveType.Weierstrass)
{
if (
(type == CurveType.Weierstrass && (4 * a * a * a) + (27 * b * b) == 0) || // Unfavourable Weierstrass curves
(type == CurveType.Montgomery && b * (a * a - 4) == 0) // Unfavourable Montgomery curves
) throw new Exception("Unfavourable curve");
this.a = a;
this.b = b;
this.modulo = modulo;
this.type = type;
}
public Point Add(Point p1, Point p2)
{
#if SAFE_MATH
CheckOnCurve(p1);
CheckOnCurve(p2);
#endif
// Special cases
if (p1 == Point.POINT_AT_INFINITY && p2 == Point.POINT_AT_INFINITY) return Point.POINT_AT_INFINITY;
else if (p1 == Point.POINT_AT_INFINITY) return p2;
else if (p2 == Point.POINT_AT_INFINITY) return p1;
else if (p1.X == p2.X && p1.Y == Inverse(p2).Y) return Point.POINT_AT_INFINITY;
BigInteger x3 = 0, y3 = 0;
if (type == CurveType.Weierstrass)
{
BigInteger slope = p1.X == p2.X && p1.Y == p2.Y ? Mod((3 * p1.X * p1.X + a) * MulInverse(2 * p1.Y)) : Mod(Mod(p2.Y - p1.Y) * MulInverse(p2.X - p1.X));
x3 = Mod((slope * slope) - p1.X - p2.X);
y3 = Mod(-((slope * x3) + p1.Y - (slope * p1.X)));
}
else if (type == CurveType.Montgomery)
{
if ((p1.X == p2.X && p1.Y == p2.Y))
{
BigInteger q = 3 * p1.X;
BigInteger w = q * p1.X;
BigInteger e = 2 * a;
BigInteger r = e * p1.X;
BigInteger t = 2 * b;
BigInteger y = t * p1.Y;
BigInteger u = MulInverse(y);
BigInteger o = w + e + 1;
BigInteger p = o * u;
}
BigInteger co = p1.X == p2.X && p1.Y == p2.Y ? Mod((3 * p1.X * p1.X + 2 * a * p1.X + 1) * MulInverse(2 * b * p1.Y)) : Mod(Mod(p2.Y - p1.Y) * MulInverse(p2.X - p1.X)); // Compute a commonly used coefficient
x3 = Mod(b * co * co - a - p1.X - p2.X);
y3 = Mod(((2 * p1.X + p2.X + a) * co) - (b * co * co * co) - p1.Y);
}
return new Point(x3, y3);
}
public Point Multiply(Point p, BigInteger scalar)
{
if (scalar <= 0) throw new Exception("Cannot multiply by a scalar which is <= 0");
if (p == Point.POINT_AT_INFINITY) return Point.POINT_AT_INFINITY;
Point p1 = new Point(p.X, p.Y);
long high_bit = scalar.HighestBit() - 1;
// Double-and-add method
while (high_bit >= 0)
{
p1 = Add(p1, p1); // Double
if ((scalar.BitAt(high_bit)))
p1 = Add(p1, p); // Add
--high_bit;
}
return p1;
}
protected BigInteger MulInverse(BigInteger eq) => MulInverse(eq, modulo);
public static BigInteger MulInverse(BigInteger eq, BigInteger modulo)
{
eq = Mod(eq, modulo);
Stack<BigInteger> collect = new Stack<BigInteger>();
BigInteger v = modulo; // Copy modulo
BigInteger m;
while ((m = v % eq) != 0)
{
collect.Push(-(v/eq));
v = eq;
eq = m;
}
if (collect.Count == 0) return 1;
v = 1;
m = collect.Pop();
while (collect.Count > 0)
{
eq = m;
m = v + (m * collect.Pop());
v = eq;
}
return Mod(m, modulo);
}
public Point Inverse(Point p) => Inverse(p, modulo);
protected static Point Inverse(Point p, BigInteger modulo) => new Point(p.X, Mod(-p.Y, modulo));
public bool IsOnCurve(Point p)
{
try { CheckOnCurve(p); }
catch { return false; }
return true;
}
protected void CheckOnCurve(Point p)
{
if (
p != Point.POINT_AT_INFINITY && // The point at infinity is asserted to be on the curve
(type == CurveType.Weierstrass && Mod(p.Y * p.Y) != Mod((p.X * p.X * p.X) + (p.X * a) + b)) || // Weierstrass formula
(type == CurveType.Montgomery && Mod(b * p.Y * p.Y) != Mod((p.X * p.X * p.X) + (p.X * p.X * a) + p.X)) // Montgomery formula
) throw new Exception("Point is not on curve");
}
protected BigInteger Mod(BigInteger b) => Mod(b, modulo);
private static BigInteger Mod(BigInteger x, BigInteger m)
{
BigInteger r; ;
if (x.Abs() >= m) r = x % m;
else r = x;
return r < 0 ? r + m : r;
}
// Efficient modular square root function
public static BigInteger ShanksTonelli(BigInteger a, BigInteger prime)
{
if (prime < 3 || ModPow(a, (prime - 1) / 2, prime) != 1) return 0;
Random rand = new Random();
int e = 0;
while ((prime & 1) != 1)
{
prime >>= 1;
e += 1;
}
BigInteger s = prime / BigInteger.Pow(2, e);
return 0;
}
protected static BigInteger ModPow(BigInteger x, BigInteger power, BigInteger prime)
{
BigInteger result = 1;
bool setBit = false;
while (power > 0)
{
x %= prime;
setBit = (power & 1) == 1;
power >>= 1;
if (setBit) result *= x;
x *= x;
}
return result;
}
}
}