Fully implemented Galois field arithmetic operations

- Changed static "size_t"-type to a define to allow for compiling with different data types
  - Added modular arithmetic operation to protected section
  - Added a simplified constructor for supplying literals
Probably some other things I didn't think were worth mentioning
NOTE: Galois-field code may be unstable!
This commit is contained in:
Gabriel Tofvesson 2018-03-04 09:59:25 +01:00
parent 90fddd72de
commit 6cbecfd2c6
3 changed files with 283 additions and 86 deletions

View File

@ -1,6 +1,7 @@
#include <iostream>
#include "BigInteger.h"
#include "Matrix.h"
#include "Galois.h"
using namespace CryptoCPP::Math;
@ -11,7 +12,7 @@ int main()
// |3 4|
Matrix * m = new Matrix(2, 2);
m->set_row
(new Vector(2, new long long[2]{ 1, 2 }), 0) WITH
(new Vector(2, new long long[2]{ 1, 2 }), 0)
(new Vector(2, new long long[2]{ 3, 4 }), 1);
// Create a 2x2 matrix
@ -19,7 +20,7 @@ int main()
// |7 8|
Matrix * m1 = new Matrix(2, 2);
m1->set_row
(new Vector(2, new long long[2]{ 5, 6 }), 0) WITH
(new Vector(2, new long long[2]{ 5, 6 }), 0)
(new Vector(2, new long long[2]{ 7, 8 }), 1);
// Multiply matrices
@ -36,6 +37,10 @@ int main()
std::cout << "\nMatrix 'res':" << std::endl;
for (size_t t = 0; t < 4; ++t) std::cout << res->at(t, true) << ((t%2) ? '\n' : ' ');
std::cout << "\ndet(m) = " << m->det() << "\ndet(m1) = " << m->det() << "\ndet(res) = " << res->det() << std::endl;
Galois * g1 = new Galois(2, 0b100011011, 0b10);
Galois * g2 = new Galois(2, 0b100011011, 0b11);
Galois * g3 = g1->mul(g2);
std::cin.ignore();
return 0;
}

View File

@ -13,7 +13,7 @@ namespace CryptoCPP{
size_t block_count(size_t bin_block_size, size_t bufs)
{
return (bufs * 8) / bin_block_size;
return (bufs * 8 * sizeof(BLOCK)) / bin_block_size;
}
void* do_copy(void* v, size_t size)
@ -24,33 +24,39 @@ namespace CryptoCPP{
}
GALOIS_API Galois::Galois(
size_t characteristic,
size_t exponent,
size_t * irreducible,
size_t irreducible_size,
size_t * value
BLOCK characteristic,
BLOCK * irreducible,
size_t irreducible_size,
BLOCK * value,
size_t value_size
) :
characteristic(characteristic),
exponent(exponent),
irreducible(irreducible),
irreducible_size(irreducible_size),
binary_block_size(_ceil(characteristic/2.0)),
data_size(binary_block_size * exponent)
exponent(high_factor(irreducible, irreducible_size, _ceil(characteristic / 2.0), 0)),
data_size(value_size)
{
data = value;
}
GALOIS_API Galois::Galois(
BLOCK characteristic,
BLOCK irreducible,
BLOCK value
) : Galois(characteristic, new BLOCK[1]{ irreducible }, 1, new BLOCK[1]{value}, 1)
{ }
GALOIS_API Galois::Galois(const Galois & copy) :
characteristic(copy.characteristic),
exponent(copy.exponent),
irreducible(new size_t[copy.irreducible_size]),
irreducible(new BLOCK[copy.irreducible_size]),
irreducible_size(copy.irreducible_size),
binary_block_size(copy.binary_block_size),
data_size(copy.data_size)
{
data = new size_t[data_size];
memcpy(irreducible, copy.irreducible, irreducible_size * sizeof(size_t));
memcpy(data, copy.data, data_size * sizeof(size_t));
data = new BLOCK[data_size];
memcpy(irreducible, copy.irreducible, irreducible_size * sizeof(BLOCK));
memcpy(data, copy.data, data_size * sizeof(BLOCK));
}
GALOIS_API Galois::~Galois()
@ -63,26 +69,26 @@ namespace CryptoCPP{
{
bool imSmaller = value->data_size > data_size;
size_t state_size = imSmaller ? value->data_size : data_size;
size_t * state = new size_t[state_size];
memset(state, 0, state_size * sizeof(size_t));
memcpy(state, imSmaller ? value->data : data, state_size * sizeof(size_t));
BLOCK * state = new BLOCK[state_size];
memset(state, 0, state_size * sizeof(BLOCK));
memcpy(state, imSmaller ? value->data : data, state_size * sizeof(BLOCK));
iadd(imSmaller ? data : value->data, imSmaller ? data_size : value->data_size, binary_block_size, state, state_size, characteristic);
return new Galois(characteristic, exponent, (size_t *)do_copy(irreducible, irreducible_size * sizeof(size_t)), irreducible_size, state);
return new Galois(characteristic, (BLOCK *)do_copy(irreducible, irreducible_size * sizeof(BLOCK)), irreducible_size, state, state_size);
}
GALOIS_API Galois * Galois::sub(const Galois * value) const
{
bool imSmaller = value->data_size > data_size;
size_t state_size = imSmaller ? value->data_size : data_size;
size_t * state = new size_t[state_size];
memset(state, 0, state_size * sizeof(size_t));
memcpy(state, data, data_size * sizeof(size_t));
BLOCK * state = new BLOCK[state_size];
memset(state, 0, state_size * sizeof(BLOCK));
memcpy(state, data, data_size * sizeof(BLOCK));
isub(value->data, value->data_size, binary_block_size, state, state_size, characteristic);
return new Galois(characteristic, exponent, (size_t *)do_copy(irreducible, irreducible_size * sizeof(size_t)), irreducible_size, state);
return new Galois(characteristic, (BLOCK *)do_copy(irreducible, irreducible_size * sizeof(BLOCK)), irreducible_size, state, state_size);
}
GALOIS_API Galois * Galois::mul(const Galois * value) const
@ -90,32 +96,160 @@ namespace CryptoCPP{
bool nb1, nb2;
size_t
h1 = high_factor(data, data_size, binary_block_size, &nb1),
h2 = high_factor(value->data, value->data_size, value->binary_block_size, &nb2);
h2 = high_factor(value->data, value->data_size, value->binary_block_size, &nb2),
h1_idx = h1 / (8 * sizeof(BLOCK)),
h2_idx = h2 / (8 * sizeof(BLOCK));
// If one of the values is 0, return a zero-Galois
if (nb1 || nb2) return new Galois(characteristic, exponent, (size_t *)do_copy(irreducible, irreducible_size * sizeof(size_t)), irreducible_size, (size_t*)memset(new size_t[1], 0, sizeof(size_t)));
if (nb1 || nb2) return new Galois(characteristic, (BLOCK *)do_copy(irreducible, irreducible_size * sizeof(BLOCK)), irreducible_size, (BLOCK*)memset(new BLOCK[1], 0, sizeof(BLOCK)), 1);
// The product of two values with the same base is represented as the sum of their exponents
size_t * state = new size_t[h1 + h2];
memset(state, 0, (h1 + h2) * sizeof(size_t));
BLOCK * state = new BLOCK[h1_idx + h2_idx + 1];
memset(state, 0, (h1_idx + h2_idx + 1) * sizeof(BLOCK));
memcpy(state, this->data, this->data_size);
imul(value->data, value->data_size, binary_block_size, state, h1 + h2, characteristic, h1, h2);
BLOCK * cmp_exp = new BLOCK[(exponent/(8 * sizeof(BLOCK))) + 1];
set_value(exponent, 1, binary_block_size, characteristic, cmp_exp);
return new Galois(characteristic, exponent, (size_t *)do_copy(irreducible, irreducible_size * sizeof(size_t)), irreducible_size, state);
imul(value->data, value->data_size, binary_block_size, &state, h1_idx + h2_idx + 1, characteristic, h1_idx, h2_idx);
ModResult * res = imod(state, h1_idx + h2_idx + 1, irreducible, irreducible_size, cmp_exp, (exponent / (8 * sizeof(BLOCK))) + 1, characteristic, binary_block_size);
delete[] state;
state = res->mod;
size_t state_size = res->mod_size;
delete[] res->div;
delete res;
return new Galois(characteristic, (BLOCK *)do_copy(irreducible, irreducible_size * sizeof(BLOCK)), irreducible_size, state, state_size);
}
GALOIS_API Galois * Galois::inv() const
{
size_t * compute = new size_t[exponent+1];
memset(compute, 0, (exponent + 1) * sizeof(size_t));
struct FactorItem {
FactorItem(BLOCK * factor, size_t factor_size) { this->factor = factor; this->factor_size = factor_size; }
BLOCK * factor;
size_t factor_size;
};
std::vector<size_t*> factors = new std::vector<size_t*>();
size_t exp = ((exponent + 1) / (8 * sizeof(BLOCK))) + 1;
BLOCK * compute = new BLOCK[exp];
memset(compute, 0, exp * sizeof(size_t));
memcpy(compute, irreducible, irreducible_size * sizeof(BLOCK));
size_t compute_size = exp;
BLOCK * temp = new BLOCK[exp];
memset(temp, 0, exp * sizeof(BLOCK));
memcpy(temp, data, data_size * sizeof(BLOCK));
size_t temp_size = exp;
std::vector<FactorItem> factors = std::vector<FactorItem>();
struct ModResult * m;
size_t high;
size_t highest1 = 1, highest2 = 1;
// TODO: Implement extended Euclidean algorithm
bool nb;
volatile bool x = false;
Loop:
high_factor(temp, temp_size, binary_block_size, &nb);
if (nb) goto Next;
m = //new ModResult(); m->div = new size_t[m->div_size = 1]{(size_t)(change?0:1)}; m->mod = new size_t[m->mod_size = 1]{0};
imod(compute, compute_size, temp, temp_size, temp, temp_size, characteristic, binary_block_size);
delete[] compute;
compute = temp;
temp = m->mod;
compute_size = temp_size;
temp_size = m->mod_size;
factors.push_back(FactorItem(m->div, m->div_size));
// Record highest values
high = high_factor(m->div, m->div_size, binary_block_size, &nb);
if (high > highest1)
{
highest2 = highest1;
highest1 = high;
}
else if (high > highest2) highest2 = high;
delete m;
goto Loop;
Next:
// Free unneeded resources
delete[] temp;
delete[] compute;
// Remove invalid computation result
delete[] factors.at(factors.size() - 1).factor;
factors.pop_back();
if (factors.size() == 0) factors.push_back(FactorItem(new BLOCK[1]{1}, 1));
// Initialize left result of the diophantine equation
compute_size = highest1 * highest2;
compute = new BLOCK[compute_size];
memset(compute, 0, compute_size * sizeof(BLOCK));
memcpy(compute, factors.at(factors.size() - 1).factor, factors.at(factors.size() - 1).factor_size * sizeof(BLOCK));
delete[] factors.at(factors.size() - 1).factor;
factors.pop_back();
// Initialize the right result
temp_size = compute_size;
temp = new BLOCK[temp_size];
memset(temp, 0, compute_size * sizeof(BLOCK));
temp[0] |= 1;
BLOCK * cmp = new BLOCK[exp];
memset(cmp, 0, exp * sizeof(BLOCK));
cmp[exponent] = 1;
// Initialize a holder for performing intermediate computations on
size_t holder_size = compute_size;
BLOCK * holder = new BLOCK[holder_size];
BLOCK * transfer;
size_t transfer_size;
// Continue computation of both sides
while (factors.size() > 0)
{
FactorItem item = factors.at(factors.size() - 1);
factors.pop_back();
memcpy(memset(holder, 0, holder_size), item.factor, item.factor_size * sizeof(size_t));
size_t f1 = high_factor(temp, temp_size, binary_block_size, 0), f2 = high_factor(holder, holder_size, binary_block_size, 0);
imul(holder, holder_size, binary_block_size, &temp, temp_size, characteristic, f1 / (8 * sizeof(BLOCK)), f2 / (8 * sizeof(BLOCK)));
temp_size = (f1 / (8 * sizeof(BLOCK))) + (f2 / (8 * sizeof(BLOCK))) + 1;
ModResult * result = imod(temp, temp_size, irreducible, irreducible_size, cmp, exp, characteristic, binary_block_size);
memcpy(memset(temp, 0, temp_size * sizeof(BLOCK)), result->mod, result->mod_size);
delete[] result->mod;
delete[] result->div;
delete result;
// Do swap
transfer = compute;
transfer_size = compute_size;
compute = temp;
compute_size = temp_size;
temp = transfer;
temp_size = transfer_size;
}
size_t result_size = ((high_factor(compute, compute_size, binary_block_size, &nb) + 1) / (8 * sizeof(BLOCK))) + 1;
BLOCK * result = new BLOCK[result_size];
memcpy(result, compute, result_size * sizeof(BLOCK));
delete[] compute;
delete[] temp;
delete[] cmp;
return new Galois(characteristic, (BLOCK*)do_copy(irreducible, irreducible_size * sizeof(BLOCK)), irreducible_size, result, result_size);
}
// These internal functions assume that an adequate state size has been chose
GALOIS_API void Galois::iadd(size_t * data, size_t data_size, size_t bin_size, size_t * state, size_t state_size, size_t characteristic)
GALOIS_API void Galois::iadd(BLOCK * data, size_t data_size, size_t bin_size, BLOCK * state, size_t state_size, BLOCK characteristic)
{
for (size_t t = block_count(bin_size, data_size); t > 0; --t)
set_value(
@ -130,7 +264,7 @@ namespace CryptoCPP{
);
}
GALOIS_API void Galois::isub(size_t * data, size_t data_size, size_t bin_size, size_t * state, size_t state_size, size_t characteristic)
GALOIS_API void Galois::isub(BLOCK * data, size_t data_size, size_t bin_size, BLOCK * state, size_t state_size, BLOCK characteristic)
{
for (size_t t = block_count(bin_size, data_size); t > 0; --t)
set_value(
@ -146,32 +280,81 @@ namespace CryptoCPP{
);
}
GALOIS_API void Galois::imul(size_t * data, size_t data_size, size_t bin_size, size_t * state, size_t state_size, size_t characteristic, size_t high1, size_t high2)
GALOIS_API void Galois::imul(BLOCK * data, size_t data_size, size_t bin_size, BLOCK ** state, size_t state_size, BLOCK characteristic, size_t high1, size_t high2)
{
size_t * temp = new size_t[high1 + high2];
memset(temp, 0, (high1 + high2) * sizeof(size_t));
BLOCK * temp = new BLOCK[high1 + high2 + 1];
//memset(temp, 0, (high1 + high2 + 1) * sizeof(size_t));
BLOCK * res = new BLOCK[high1 + high2 + 1];
memset(res, 0, (high1 + high2 + 1) * sizeof(BLOCK));
size_t data_blocks = block_count(bin_size, data_size);
for (size_t t = block_count(bin_size, state_size); t > 0; --t)
{
memcpy(temp, data, data_size * sizeof(size_t));
ilsh(temp, data_size + (t*bin_size), t);
memset(temp, 0, (high1 + high2 + 1) * sizeof(BLOCK));
//memcpy(temp, data, data_size * sizeof(size_t));
//ilsh(temp, data_size, bin_size, characteristic, t-1);
for (size_t tblk = 0; tblk < data_blocks; ++tblk) // Multiply each element
set_value(tblk, get_value(tblk, bin_size, data) * get_value(t - 1, bin_size, state), bin_size, characteristic, temp);
set_value(tblk + t - 1, get_value(tblk, bin_size, data) * get_value(t - 1, bin_size, *state), bin_size, characteristic, temp);
// Add shifted and multiplied value to state
iadd(state, data_size + (t*bin_size), bin_size, state, state_size, characteristic);
iadd(temp, high1 + high2 + 1, bin_size, res, high1 + high2 + 1, characteristic);
}
delete[] *state;
*state = res;
}
GALOIS_API void Galois::iinv(size_t * state, size_t state_size)
GALOIS_API Galois::ModResult* Galois::imod(BLOCK * value, size_t value_size, BLOCK * modulo, size_t modulo_size, BLOCK * cmp, size_t cmp_size, BLOCK characteristic, size_t bin_size)
{
bool nb;
size_t mod_max = high_factor(modulo, modulo_size, bin_size, &nb);
if (nb) return 0;
size_t cmp_max = high_factor(cmp, cmp_size, bin_size, &nb);
if (nb) return 0;
BLOCK * aligned = 0;
ModResult * result = new ModResult();
result->mod = new BLOCK[value_size];
result->mod_size = value_size;
memcpy(result->mod, value, value_size * sizeof(BLOCK));
result->div = 0;
LoopStart: // Loop start
// Loop evaluation
size_t idx = high_factor(result->mod, result->mod_size, bin_size, &nb);
if (nb || idx < cmp_max || (idx == cmp_max && result->mod[idx / (8 * sizeof(BLOCK))] < cmp[cmp_max / (8 * sizeof(BLOCK))])) goto LoopEnd; // Break
// Loop body
if (aligned == 0) {
aligned = new BLOCK[value_size];
result->div_size = (((idx - mod_max) * bin_size) / (8 * sizeof(BLOCK))) + 1;
result->div = new BLOCK[result->div_size];
memset(result->div, 0, result->div_size * sizeof(BLOCK));
}
memcpy(memset(aligned, 0, value_size * sizeof(BLOCK)), modulo, modulo_size * sizeof(BLOCK));
ilsh(aligned, value_size, bin_size, characteristic, idx - mod_max);
isub(aligned, value_size, bin_size, result->mod, value_size, characteristic);
set_value(idx - mod_max, (get_value(idx - mod_max, bin_size, result->div) + 1) % characteristic, bin_size, characteristic, result->div);
// End of loop body
goto LoopStart;
LoopEnd:
if (result->div == 0) {
result->div = new BLOCK[1]{0};
result->div_size = 1;
}
delete[] aligned;
// Stuff after loop
return result;
}
GALOIS_API void Galois::ilsh(size_t * state, size_t state_size, size_t bin_size, size_t characteristic, size_t shiftc)
GALOIS_API void Galois::ilsh(BLOCK * state, size_t state_size, size_t bin_size, BLOCK characteristic, size_t shiftc)
{
for (size_t t = block_count(bin_size, state_size); t > shiftc; --t)
set_value(t - 1, get_value(t - 1 - shiftc, bin_size, state), bin_size, characteristic, state);
@ -186,12 +369,12 @@ namespace CryptoCPP{
return result;
}
GALOIS_API size_t Galois::get_value(size_t index, size_t block_size, size_t * from)
GALOIS_API BLOCK Galois::get_value(size_t index, size_t block_size, BLOCK * from)
{
// Compute block/sub-block indexing
size_t upper_bit_size = ((block_size*index)%(8*sizeof(size_t)))% block_size;
size_t upper_block_index = (index*block_size)/8;
size_t lower_block_index = ((index - upper_bit_size)*block_size)/8;
size_t upper_bit_size = ((block_size*index)%(8*sizeof(BLOCK)))% block_size;
size_t upper_block_index = (index*block_size)/(8 * sizeof(BLOCK));
size_t lower_block_index = ((index - upper_bit_size)*block_size)/ (8 * sizeof(BLOCK));
// Boundary disparity check
if(upper_block_index!=lower_block_index)
@ -201,27 +384,27 @@ namespace CryptoCPP{
size_t lower_block = from[lower_block_index] & _mask(block_size -upper_bit_size, false);
// Do alignment
size_t block = (upper_block << (block_size - upper_bit_size)) | (lower_block >> ((sizeof(size_t)*8)-upper_bit_size));
BLOCK block = (upper_block << (block_size - upper_bit_size)) | (lower_block >> ((sizeof(BLOCK)*8)-upper_bit_size));
return block;
}
else
{
// Passed: no boundary disparity
size_t shift = (block_size * index) % (8 * sizeof(size_t));
size_t block_index = (block_size * index) / (8 * sizeof(size_t));
size_t shift = (block_size * index) % (8 * sizeof(BLOCK));
size_t block_index = (block_size * index) / (8 * sizeof(BLOCK));
// Get and mask
return from[block_index] >> shift & _mask(block_size, true);
}
}
GALOIS_API void Galois::set_value(size_t index, size_t value, size_t block_size, size_t characteristic, size_t * to)
GALOIS_API void Galois::set_value(size_t index, BLOCK value, size_t block_size, BLOCK characteristic, BLOCK * to)
{
value = value % characteristic;
// Compute block/sub-block indexing
size_t upper_bit_size = ((block_size*index)%(8*sizeof(size_t)))%block_size;
size_t upper_bit_size = ((block_size*index)%(8*sizeof(BLOCK)))%block_size;
size_t upper_block_index = (index*block_size)/8;
size_t lower_block_index = ((index - upper_bit_size)*block_size)/8;
@ -229,34 +412,34 @@ namespace CryptoCPP{
if(upper_block_index!=lower_block_index)
{
// Mask bits
to[upper_block_index] &= ~_mask(upper_bit_size, false);
to[lower_block_index] &= ~_mask(block_size -upper_bit_size, true);
to[upper_block_index] &= ~_mask(upper_bit_size, true);
to[lower_block_index] &= ~_mask(block_size - upper_bit_size, false);
// Get block values
to[upper_block_index] = value >> (block_size - upper_bit_size);
to[lower_block_index] = (value & _mask(block_size -upper_bit_size, false)) << ((8 * sizeof(size_t)) - (block_size - upper_bit_size));
to[upper_block_index] |= value >> (block_size - upper_bit_size);
to[lower_block_index] |= (value & _mask(block_size -upper_bit_size, false)) << ((8 * sizeof(BLOCK)) - (block_size - upper_bit_size));
}
else
{
// Passed: no boundary disparity
size_t shift = (block_size * index) % (8 * sizeof(size_t));
size_t block_index = (block_size * index) / (8 * sizeof(size_t));
size_t shift = (block_size * index) % (8 * sizeof(BLOCK));
size_t block_index = (block_size * index) / (8 * sizeof(BLOCK));
// Mask bits
to[block_index] &= ~_mask(block_size, false) << shift;
to[block_index] &= ~(_mask(block_size, true) << shift);
// Apply shift
to[block_index] = value << shift;
to[block_index] |= value << shift;
}
}
GALOIS_API size_t Galois::high_factor(size_t * state, size_t state_size, size_t bin_size, bool * noBits)
GALOIS_API size_t Galois::high_factor(BLOCK * state, size_t state_size, size_t bin_size, bool * noBits)
{
*noBits = false;
if(noBits!=0) *noBits = false;
for (size_t t = block_count(bin_size, state_size); t > 0; --t)
if (get_value(t - 1, bin_size, state))
return t - 1;
*noBits = true;
if (noBits != 0) *noBits = true;
return 0;
}
}

View File

@ -3,6 +3,7 @@
#if defined(__MINGW32__) || defined(_WIN32)
#if defined(GALOIS_API)
#undef GALOIS_API
#define GALOIS_API __declspec(dllexport)
#else
#define GALOIS_API __declspec(dllimport)
@ -18,6 +19,7 @@
#endif
#endif
#define BLOCK size_t
namespace CryptoCPP {
namespace Math {
@ -25,12 +27,18 @@ namespace CryptoCPP {
{
public:
GALOIS_API Galois(
size_t characteristic,
size_t exponent,
size_t * irreducible,
BLOCK characteristic,
BLOCK * irreducible,
size_t irreducible_size,
size_t * value
BLOCK * value,
size_t value_size
);
GALOIS_API Galois(
BLOCK characteristic,
BLOCK irreducible,
BLOCK value
);
GALOIS_API Galois(const Galois & copy);
GALOIS_API ~Galois();
// Addition
@ -45,33 +53,34 @@ namespace CryptoCPP {
// Inverse multiplication
GALOIS_API Galois * inv() const;
protected:
static const size_t high_bit = 1 << ((sizeof(size_t)*8)-1);
// GF parameters
size_t characteristic, exponent, *irreducible, irreducible_size;
// Effective storage params
size_t binary_block_size, data_size;
// Value of this GF object
size_t * data;
static const BLOCK high_bit = 1 << ((sizeof(BLOCK) * 8) - 1);
// GF parameters & value
BLOCK characteristic, *irreducible, *data;
// Storage params
size_t binary_block_size, data_size, irreducible_size, exponent;
// Reduce the value of this galois to fit characteristic
GALOIS_API void reduce();
struct ModResult {
BLOCK * div;
size_t div_size;
BLOCK * mod;
size_t mod_size;
};
// Logic
GALOIS_API static void iadd(size_t * data, size_t data_size, size_t bin_size, size_t * state, size_t state_size, size_t characteristic); // Addition
GALOIS_API static void isub(size_t * data, size_t data_size, size_t bin_size, size_t * state, size_t state_size, size_t characteristic); // Subtraction
GALOIS_API static void imul(size_t * data, size_t data_size, size_t bin_size, size_t * state, size_t state_size, size_t characteristic, size_t high1, size_t high2); // Multiplication
GALOIS_API static void iinv(size_t * state, size_t state_size); // Multiplicative inverse
GALOIS_API static void ilsh(size_t * state, size_t state_size, size_t bin_size, size_t characteristic, size_t shiftc); // Left shift
GALOIS_API static void iadd(BLOCK * data, size_t data_size, size_t bin_size, BLOCK * state, size_t state_size, BLOCK characteristic); // Addition
GALOIS_API static void isub(BLOCK * data, size_t data_size, size_t bin_size, BLOCK * state, size_t state_size, BLOCK characteristic); // Subtraction
GALOIS_API static void imul(BLOCK * data, size_t data_size, size_t bin_size, BLOCK ** state, size_t state_size, BLOCK characteristic, size_t high1, size_t high2); // Multiplication
GALOIS_API static ModResult* imod(BLOCK * value, size_t value_size, BLOCK * modulo, size_t modulo_size, BLOCK * cmp, size_t cmp_size, BLOCK characteristic, size_t bin_size);
GALOIS_API static void ilsh(BLOCK * state, size_t state_size, size_t bin_size, BLOCK characteristic, size_t shiftc); // Left shift
// Data management. Don't look at these unless you want a headache
GALOIS_API static size_t _mask(size_t bits, bool side);
GALOIS_API static size_t get_value(size_t idx, size_t block_size, size_t * from);
GALOIS_API static void set_value(size_t idx, size_t value, size_t block_size, size_t characteristic, size_t * to);
GALOIS_API static size_t high_factor(size_t * state, size_t state_size, size_t bin_size, bool * noBits);
GALOIS_API static BLOCK _mask(size_t bits, bool side);
GALOIS_API static BLOCK get_value(size_t idx, size_t block_size, BLOCK * from);
GALOIS_API static void set_value(size_t idx, BLOCK value, size_t block_size, BLOCK characteristic, BLOCK * to);
GALOIS_API static size_t high_factor(BLOCK * state, size_t state_size, size_t bin_size, bool * noBits);
};
}
}