CryptoCPP/RSA/RSA.cpp
GabrielTofvesson caf800c4cd Implemented primality tests
Implemented bounded random bigint generator
Implemented prime number generator
Implemented RSA
Implemented RSA key generation
Added some convenient functions to BigInteger
2018-03-06 03:48:16 +01:00

204 lines
6.0 KiB
C++

#define RSA_API
#include "RSA.h"
#include "Primes.h"
#include <thread>
namespace CryptoCPP { namespace RSA {
RSA_API RSA::RSA(KeyPair* keypair)
{
this->keypair = keypair;
}
RSA_API RSA::~RSA()
{
delete keypair->priv;
delete keypair->pub->exp;
delete keypair->pub->mod;
delete keypair->pub;
delete keypair;
}
RSA_API CipherData* RSA::encrypt(CipherData* data)
{
return crypto_compute(data, keypair->pub->exp, keypair->pub->mod);
}
RSA_API CipherData* RSA::sign(CipherData* data)
{
if (!can_decrypt()) throw new std::exception();
return crypto_compute(data, keypair->priv, keypair->pub->mod);
}
RSA_API CipherData* RSA::decrypt(CipherData* data)
{
if (!can_decrypt()) throw new std::exception();
return crypto_compute(data, keypair->priv, keypair->pub->mod);
}
RSA_API CipherData* RSA::check_sign(CipherData* data)
{
return crypto_compute(data, keypair->pub->exp, keypair->pub->mod);
}
RSA_API bool RSA::can_decrypt()
{
return keypair->priv != 0;
}
RSA_API CipherData* RSA::serialize_net()
{
unsigned int pk_size, mod_size;
char * pk = keypair->pub->exp->to_array(&pk_size);
char * mod = keypair->pub->mod->to_array(&mod_size);
char* ser = new char[1 + (2 * 4) + pk_size + mod_size];
ser[0] = 0; // Identifier: Shows that this is a public key packet
memcpy(ser + 1, &pk_size, 4);
memcpy(ser + 5, &mod_size, 4);
memcpy(ser + 9, pk, pk_size);
memcpy(ser + 9 + pk_size, mod, mod_size);
delete[] mod;
delete[] pk;
CipherData* data = new CipherData();
data->data = ser;
data->size = 1 + (2 * 4) + pk_size + mod_size;
return data;
}
RSA_API CipherData* RSA::serialize_all()
{
unsigned int pk_size, mod_size, priv_size;
char * pk = keypair->pub->exp->to_array(&pk_size);
char * mod = keypair->pub->mod->to_array(&mod_size);
char * priv = keypair->priv->to_array(&priv_size);
char* ser = new char[1 + (2 * 4) + pk_size + mod_size + priv_size];
ser[0] = 1; // Identifier: Shows that this is a private key packet
memcpy(ser + 1, &pk_size, 4);
memcpy(ser + 1 + 4, &mod_size, 4);
memcpy(ser + 1 + (2 * 4), &priv_size, 4);
memcpy(ser + 1 + (3 * 4), pk, pk_size);
memcpy(ser + 1 + (3 * 4) + pk_size, mod, mod_size);
memcpy(ser + 1 + (3 * 4) + pk_size + mod_size, priv, priv_size);
delete[] priv;
delete[] mod;
delete[] pk;
CipherData* data = new CipherData();
data->data = ser;
data->size = 1 + (2 * 4) + pk_size + mod_size + priv_size;
return data;
}
RSA_API RSA * RSA::deserialize(CipherData* data)
{
bool isprivate = data->data[0];
size_t pk_size, mod_size, priv_size = 0;
pk_size = *(unsigned int*)(data->data + 1);
mod_size = *(unsigned int*)(data->data + 1 + 4);
if(isprivate) priv_size = *(unsigned int*)(data->data + 1 + (2 * 4));
if (
pk_size >= data->size ||
mod_size >= data->size ||
priv_size >= data->size ||
pk_size + mod_size >= data->size ||
pk_size + priv_size >= data->size ||
pk_size + mod_size + priv_size >= data->size ||
mod_size + pk_size >= data->size
)
throw new std::exception(); // Index out of bounds
char * pk = new char[pk_size];
char * mod = new char[mod_size];
char * priv = isprivate ? new char[priv_size] : 0;
memcpy(pk, data->data + 1 + (3 * 4), pk_size);
memcpy(mod, data->data + 1 + (3 * 4) + pk_size, mod_size);
if (isprivate) memcpy(priv, data->data + 1 + (3 * 4) + pk_size + mod_size, priv_size);
KeyPair* pair = new KeyPair();
pair->priv = isprivate ? new Math::BigInteger(priv, priv_size) : 0;
pair->pub = new PublicKey();
pair->pub->mod = new Math::BigInteger(mod, mod_size);
pair->pub->exp = new Math::BigInteger(pk, pk_size);
if (isprivate) delete[] priv;
delete[] mod;
delete[] pk;
return new RSA(pair);
}
RSA_API CipherData* RSA::crypto_compute(CipherData* data, Math::BigInteger * exp, Math::BigInteger * mod)
{
CipherData* out = new CipherData();
char* c = new char[data->size + 1];
c[data->size] = 0;
memcpy(c, data->data, data->size);
Math::BigInteger base = Math::BigInteger(c, data->size + 1);
Math::BigInteger * encrypted = Math::BigInteger::mod_pow(&base, exp, mod);
out->data = encrypted->to_array(&out->size);
delete encrypted;
return out;
}
RSA_API KeyPair* generate_key_pair(RandomProvider provider, size_t approximate_byte_count, size_t byte_margin, size_t certainty)
{
bool cancellation = false;
char* c = new char[sizeof(size_t)];
for (size_t t = sizeof(size_t); t > 0; --t) c[t] = provider();
size_t margin = *(size_t*)c;
margin %= byte_margin;
Math::BigInteger * p = Primes::generate_prime(provider, provider() > 128 ? (approximate_byte_count + margin) : (approximate_byte_count - margin), certainty, Primes::miller_rabin_prime_test, cancellation);
for (size_t t = sizeof(size_t); t > 0; --t) c[t] = provider();
size_t margin = *(size_t*)c;
margin %= byte_margin;
Math::BigInteger * q = Primes::generate_prime(provider, provider() > 128 ? (approximate_byte_count + margin) : (approximate_byte_count - margin), certainty, Primes::miller_rabin_prime_test, cancellation);
delete[] c;
// Compute n
Math::BigInteger * n = *p * *q;
// Compute totient n
Math::BigInteger * tmp1 = *p - 1;
Math::BigInteger * tmp2 = *q - 1;
Math::BigInteger * gcd = Math::BigInteger::gcd(tmp1, tmp2);
Math::BigInteger * mul = *tmp1 * *tmp2;
delete tmp1;
delete tmp2;
Math::BigInteger * m = *mul / *gcd; // Totient n
delete gcd;
delete mul;
bool nonzero;
bool zeroes;
char * gen = 0;
size_t gen_size;
char last = m->highest_nonzero();
size_t idx = m->highest_nonzero_index();
do {
if (gen != 0) delete[] gen;
nonzero = false;
gen = Primes::generate_bounded_integer(provider, 0, last, idx, &gen_size, &zeroes);
for (size_t t = 1; t < gen_size; ++t)
if (nonzero = gen[t])
break;
} while (zeroes || (!nonzero && gen[0]==1));
Math::BigInteger * e = new Math::BigInteger(gen, gen_size);
delete[] gen;
Math::BigInteger * inverse = Math::BigInteger::mul_inv(*e, *n);
delete m;
PublicKey * pk = new PublicKey();
pk->exp = e;
pk->mod = n;
KeyPair * kp = new KeyPair();
kp->priv = inverse;
kp->pub = pk;
return kp;
}
}}