- Changed static "size_t"-type to a define to allow for compiling with different data types - Added modular arithmetic operation to protected section - Added a simplified constructor for supplying literals Probably some other things I didn't think were worth mentioning NOTE: Galois-field code may be unstable!
447 lines
15 KiB
C++
447 lines
15 KiB
C++
#define GALOIS_API
|
|
|
|
#include "Galois.h"
|
|
#include <string.h>
|
|
#include <vector>
|
|
|
|
namespace CryptoCPP{
|
|
namespace Math{
|
|
size_t _ceil(double d)
|
|
{
|
|
return (size_t)d + (d > (size_t)d ? 1 : 0);
|
|
}
|
|
|
|
size_t block_count(size_t bin_block_size, size_t bufs)
|
|
{
|
|
return (bufs * 8 * sizeof(BLOCK)) / bin_block_size;
|
|
}
|
|
|
|
void* do_copy(void* v, size_t size)
|
|
{
|
|
char * c = new char[size];
|
|
memcpy(c, v, size);
|
|
return c;
|
|
}
|
|
|
|
GALOIS_API Galois::Galois(
|
|
BLOCK characteristic,
|
|
BLOCK * irreducible,
|
|
size_t irreducible_size,
|
|
BLOCK * value,
|
|
size_t value_size
|
|
) :
|
|
characteristic(characteristic),
|
|
irreducible(irreducible),
|
|
irreducible_size(irreducible_size),
|
|
binary_block_size(_ceil(characteristic/2.0)),
|
|
exponent(high_factor(irreducible, irreducible_size, _ceil(characteristic / 2.0), 0)),
|
|
data_size(value_size)
|
|
{
|
|
data = value;
|
|
}
|
|
GALOIS_API Galois::Galois(
|
|
BLOCK characteristic,
|
|
BLOCK irreducible,
|
|
BLOCK value
|
|
) : Galois(characteristic, new BLOCK[1]{ irreducible }, 1, new BLOCK[1]{value}, 1)
|
|
{ }
|
|
|
|
GALOIS_API Galois::Galois(const Galois & copy) :
|
|
characteristic(copy.characteristic),
|
|
exponent(copy.exponent),
|
|
irreducible(new BLOCK[copy.irreducible_size]),
|
|
irreducible_size(copy.irreducible_size),
|
|
binary_block_size(copy.binary_block_size),
|
|
data_size(copy.data_size)
|
|
{
|
|
data = new BLOCK[data_size];
|
|
memcpy(irreducible, copy.irreducible, irreducible_size * sizeof(BLOCK));
|
|
memcpy(data, copy.data, data_size * sizeof(BLOCK));
|
|
}
|
|
|
|
GALOIS_API Galois::~Galois()
|
|
{
|
|
delete[] irreducible;
|
|
delete[] data;
|
|
}
|
|
|
|
GALOIS_API Galois * Galois::add(const Galois * value) const
|
|
{
|
|
bool imSmaller = value->data_size > data_size;
|
|
size_t state_size = imSmaller ? value->data_size : data_size;
|
|
BLOCK * state = new BLOCK[state_size];
|
|
memset(state, 0, state_size * sizeof(BLOCK));
|
|
memcpy(state, imSmaller ? value->data : data, state_size * sizeof(BLOCK));
|
|
|
|
iadd(imSmaller ? data : value->data, imSmaller ? data_size : value->data_size, binary_block_size, state, state_size, characteristic);
|
|
|
|
return new Galois(characteristic, (BLOCK *)do_copy(irreducible, irreducible_size * sizeof(BLOCK)), irreducible_size, state, state_size);
|
|
}
|
|
|
|
GALOIS_API Galois * Galois::sub(const Galois * value) const
|
|
{
|
|
bool imSmaller = value->data_size > data_size;
|
|
size_t state_size = imSmaller ? value->data_size : data_size;
|
|
BLOCK * state = new BLOCK[state_size];
|
|
memset(state, 0, state_size * sizeof(BLOCK));
|
|
memcpy(state, data, data_size * sizeof(BLOCK));
|
|
|
|
isub(value->data, value->data_size, binary_block_size, state, state_size, characteristic);
|
|
|
|
return new Galois(characteristic, (BLOCK *)do_copy(irreducible, irreducible_size * sizeof(BLOCK)), irreducible_size, state, state_size);
|
|
}
|
|
|
|
GALOIS_API Galois * Galois::mul(const Galois * value) const
|
|
{
|
|
bool nb1, nb2;
|
|
size_t
|
|
h1 = high_factor(data, data_size, binary_block_size, &nb1),
|
|
h2 = high_factor(value->data, value->data_size, value->binary_block_size, &nb2),
|
|
h1_idx = h1 / (8 * sizeof(BLOCK)),
|
|
h2_idx = h2 / (8 * sizeof(BLOCK));
|
|
|
|
// If one of the values is 0, return a zero-Galois
|
|
if (nb1 || nb2) return new Galois(characteristic, (BLOCK *)do_copy(irreducible, irreducible_size * sizeof(BLOCK)), irreducible_size, (BLOCK*)memset(new BLOCK[1], 0, sizeof(BLOCK)), 1);
|
|
|
|
// The product of two values with the same base is represented as the sum of their exponents
|
|
BLOCK * state = new BLOCK[h1_idx + h2_idx + 1];
|
|
memset(state, 0, (h1_idx + h2_idx + 1) * sizeof(BLOCK));
|
|
memcpy(state, this->data, this->data_size);
|
|
|
|
BLOCK * cmp_exp = new BLOCK[(exponent/(8 * sizeof(BLOCK))) + 1];
|
|
set_value(exponent, 1, binary_block_size, characteristic, cmp_exp);
|
|
|
|
imul(value->data, value->data_size, binary_block_size, &state, h1_idx + h2_idx + 1, characteristic, h1_idx, h2_idx);
|
|
ModResult * res = imod(state, h1_idx + h2_idx + 1, irreducible, irreducible_size, cmp_exp, (exponent / (8 * sizeof(BLOCK))) + 1, characteristic, binary_block_size);
|
|
delete[] state;
|
|
state = res->mod;
|
|
size_t state_size = res->mod_size;
|
|
delete[] res->div;
|
|
delete res;
|
|
|
|
return new Galois(characteristic, (BLOCK *)do_copy(irreducible, irreducible_size * sizeof(BLOCK)), irreducible_size, state, state_size);
|
|
}
|
|
|
|
GALOIS_API Galois * Galois::inv() const
|
|
{
|
|
struct FactorItem {
|
|
FactorItem(BLOCK * factor, size_t factor_size) { this->factor = factor; this->factor_size = factor_size; }
|
|
BLOCK * factor;
|
|
size_t factor_size;
|
|
};
|
|
|
|
size_t exp = ((exponent + 1) / (8 * sizeof(BLOCK))) + 1;
|
|
BLOCK * compute = new BLOCK[exp];
|
|
memset(compute, 0, exp * sizeof(size_t));
|
|
memcpy(compute, irreducible, irreducible_size * sizeof(BLOCK));
|
|
|
|
size_t compute_size = exp;
|
|
|
|
BLOCK * temp = new BLOCK[exp];
|
|
memset(temp, 0, exp * sizeof(BLOCK));
|
|
memcpy(temp, data, data_size * sizeof(BLOCK));
|
|
|
|
size_t temp_size = exp;
|
|
|
|
std::vector<FactorItem> factors = std::vector<FactorItem>();
|
|
struct ModResult * m;
|
|
size_t high;
|
|
size_t highest1 = 1, highest2 = 1;
|
|
|
|
// TODO: Implement extended Euclidean algorithm
|
|
bool nb;
|
|
volatile bool x = false;
|
|
Loop:
|
|
high_factor(temp, temp_size, binary_block_size, &nb);
|
|
if (nb) goto Next;
|
|
|
|
m = //new ModResult(); m->div = new size_t[m->div_size = 1]{(size_t)(change?0:1)}; m->mod = new size_t[m->mod_size = 1]{0};
|
|
imod(compute, compute_size, temp, temp_size, temp, temp_size, characteristic, binary_block_size);
|
|
delete[] compute;
|
|
compute = temp;
|
|
temp = m->mod;
|
|
compute_size = temp_size;
|
|
temp_size = m->mod_size;
|
|
factors.push_back(FactorItem(m->div, m->div_size));
|
|
|
|
// Record highest values
|
|
high = high_factor(m->div, m->div_size, binary_block_size, &nb);
|
|
if (high > highest1)
|
|
{
|
|
highest2 = highest1;
|
|
highest1 = high;
|
|
}
|
|
else if (high > highest2) highest2 = high;
|
|
delete m;
|
|
goto Loop;
|
|
|
|
Next:
|
|
// Free unneeded resources
|
|
delete[] temp;
|
|
delete[] compute;
|
|
|
|
// Remove invalid computation result
|
|
delete[] factors.at(factors.size() - 1).factor;
|
|
factors.pop_back();
|
|
|
|
if (factors.size() == 0) factors.push_back(FactorItem(new BLOCK[1]{1}, 1));
|
|
|
|
// Initialize left result of the diophantine equation
|
|
compute_size = highest1 * highest2;
|
|
compute = new BLOCK[compute_size];
|
|
memset(compute, 0, compute_size * sizeof(BLOCK));
|
|
memcpy(compute, factors.at(factors.size() - 1).factor, factors.at(factors.size() - 1).factor_size * sizeof(BLOCK));
|
|
delete[] factors.at(factors.size() - 1).factor;
|
|
factors.pop_back();
|
|
|
|
// Initialize the right result
|
|
temp_size = compute_size;
|
|
temp = new BLOCK[temp_size];
|
|
memset(temp, 0, compute_size * sizeof(BLOCK));
|
|
temp[0] |= 1;
|
|
|
|
BLOCK * cmp = new BLOCK[exp];
|
|
memset(cmp, 0, exp * sizeof(BLOCK));
|
|
cmp[exponent] = 1;
|
|
|
|
// Initialize a holder for performing intermediate computations on
|
|
size_t holder_size = compute_size;
|
|
BLOCK * holder = new BLOCK[holder_size];
|
|
|
|
BLOCK * transfer;
|
|
size_t transfer_size;
|
|
|
|
// Continue computation of both sides
|
|
while (factors.size() > 0)
|
|
{
|
|
FactorItem item = factors.at(factors.size() - 1);
|
|
factors.pop_back();
|
|
memcpy(memset(holder, 0, holder_size), item.factor, item.factor_size * sizeof(size_t));
|
|
|
|
size_t f1 = high_factor(temp, temp_size, binary_block_size, 0), f2 = high_factor(holder, holder_size, binary_block_size, 0);
|
|
|
|
imul(holder, holder_size, binary_block_size, &temp, temp_size, characteristic, f1 / (8 * sizeof(BLOCK)), f2 / (8 * sizeof(BLOCK)));
|
|
temp_size = (f1 / (8 * sizeof(BLOCK))) + (f2 / (8 * sizeof(BLOCK))) + 1;
|
|
ModResult * result = imod(temp, temp_size, irreducible, irreducible_size, cmp, exp, characteristic, binary_block_size);
|
|
memcpy(memset(temp, 0, temp_size * sizeof(BLOCK)), result->mod, result->mod_size);
|
|
delete[] result->mod;
|
|
delete[] result->div;
|
|
delete result;
|
|
|
|
// Do swap
|
|
transfer = compute;
|
|
transfer_size = compute_size;
|
|
|
|
compute = temp;
|
|
compute_size = temp_size;
|
|
|
|
temp = transfer;
|
|
temp_size = transfer_size;
|
|
}
|
|
|
|
size_t result_size = ((high_factor(compute, compute_size, binary_block_size, &nb) + 1) / (8 * sizeof(BLOCK))) + 1;
|
|
BLOCK * result = new BLOCK[result_size];
|
|
memcpy(result, compute, result_size * sizeof(BLOCK));
|
|
delete[] compute;
|
|
delete[] temp;
|
|
delete[] cmp;
|
|
return new Galois(characteristic, (BLOCK*)do_copy(irreducible, irreducible_size * sizeof(BLOCK)), irreducible_size, result, result_size);
|
|
}
|
|
|
|
// These internal functions assume that an adequate state size has been chose
|
|
GALOIS_API void Galois::iadd(BLOCK * data, size_t data_size, size_t bin_size, BLOCK * state, size_t state_size, BLOCK characteristic)
|
|
{
|
|
for (size_t t = block_count(bin_size, data_size); t > 0; --t)
|
|
set_value(
|
|
t - 1,
|
|
(
|
|
get_value(t-1, bin_size, state) +
|
|
get_value(t - 1, bin_size, data)
|
|
) % characteristic,
|
|
bin_size,
|
|
characteristic,
|
|
state
|
|
);
|
|
}
|
|
|
|
GALOIS_API void Galois::isub(BLOCK * data, size_t data_size, size_t bin_size, BLOCK * state, size_t state_size, BLOCK characteristic)
|
|
{
|
|
for (size_t t = block_count(bin_size, data_size); t > 0; --t)
|
|
set_value(
|
|
t - 1,
|
|
(
|
|
characteristic +
|
|
get_value(t - 1, bin_size, state) -
|
|
get_value(t - 1, bin_size, data)
|
|
) % characteristic,
|
|
bin_size,
|
|
characteristic,
|
|
state
|
|
);
|
|
}
|
|
|
|
GALOIS_API void Galois::imul(BLOCK * data, size_t data_size, size_t bin_size, BLOCK ** state, size_t state_size, BLOCK characteristic, size_t high1, size_t high2)
|
|
{
|
|
BLOCK * temp = new BLOCK[high1 + high2 + 1];
|
|
//memset(temp, 0, (high1 + high2 + 1) * sizeof(size_t));
|
|
|
|
BLOCK * res = new BLOCK[high1 + high2 + 1];
|
|
memset(res, 0, (high1 + high2 + 1) * sizeof(BLOCK));
|
|
|
|
size_t data_blocks = block_count(bin_size, data_size);
|
|
|
|
for (size_t t = block_count(bin_size, state_size); t > 0; --t)
|
|
{
|
|
memset(temp, 0, (high1 + high2 + 1) * sizeof(BLOCK));
|
|
//memcpy(temp, data, data_size * sizeof(size_t));
|
|
//ilsh(temp, data_size, bin_size, characteristic, t-1);
|
|
|
|
for (size_t tblk = 0; tblk < data_blocks; ++tblk) // Multiply each element
|
|
set_value(tblk + t - 1, get_value(tblk, bin_size, data) * get_value(t - 1, bin_size, *state), bin_size, characteristic, temp);
|
|
|
|
// Add shifted and multiplied value to state
|
|
iadd(temp, high1 + high2 + 1, bin_size, res, high1 + high2 + 1, characteristic);
|
|
}
|
|
delete[] *state;
|
|
*state = res;
|
|
}
|
|
|
|
GALOIS_API Galois::ModResult* Galois::imod(BLOCK * value, size_t value_size, BLOCK * modulo, size_t modulo_size, BLOCK * cmp, size_t cmp_size, BLOCK characteristic, size_t bin_size)
|
|
{
|
|
bool nb;
|
|
size_t mod_max = high_factor(modulo, modulo_size, bin_size, &nb);
|
|
if (nb) return 0;
|
|
size_t cmp_max = high_factor(cmp, cmp_size, bin_size, &nb);
|
|
if (nb) return 0;
|
|
|
|
BLOCK * aligned = 0;
|
|
ModResult * result = new ModResult();
|
|
result->mod = new BLOCK[value_size];
|
|
result->mod_size = value_size;
|
|
memcpy(result->mod, value, value_size * sizeof(BLOCK));
|
|
|
|
result->div = 0;
|
|
|
|
LoopStart: // Loop start
|
|
// Loop evaluation
|
|
size_t idx = high_factor(result->mod, result->mod_size, bin_size, &nb);
|
|
if (nb || idx < cmp_max || (idx == cmp_max && result->mod[idx / (8 * sizeof(BLOCK))] < cmp[cmp_max / (8 * sizeof(BLOCK))])) goto LoopEnd; // Break
|
|
|
|
// Loop body
|
|
if (aligned == 0) {
|
|
aligned = new BLOCK[value_size];
|
|
result->div_size = (((idx - mod_max) * bin_size) / (8 * sizeof(BLOCK))) + 1;
|
|
result->div = new BLOCK[result->div_size];
|
|
memset(result->div, 0, result->div_size * sizeof(BLOCK));
|
|
}
|
|
memcpy(memset(aligned, 0, value_size * sizeof(BLOCK)), modulo, modulo_size * sizeof(BLOCK));
|
|
ilsh(aligned, value_size, bin_size, characteristic, idx - mod_max);
|
|
isub(aligned, value_size, bin_size, result->mod, value_size, characteristic);
|
|
|
|
set_value(idx - mod_max, (get_value(idx - mod_max, bin_size, result->div) + 1) % characteristic, bin_size, characteristic, result->div);
|
|
|
|
// End of loop body
|
|
goto LoopStart;
|
|
LoopEnd:
|
|
|
|
if (result->div == 0) {
|
|
result->div = new BLOCK[1]{0};
|
|
result->div_size = 1;
|
|
}
|
|
delete[] aligned;
|
|
|
|
// Stuff after loop
|
|
return result;
|
|
}
|
|
|
|
GALOIS_API void Galois::ilsh(BLOCK * state, size_t state_size, size_t bin_size, BLOCK characteristic, size_t shiftc)
|
|
{
|
|
for (size_t t = block_count(bin_size, state_size); t > shiftc; --t)
|
|
set_value(t - 1, get_value(t - 1 - shiftc, bin_size, state), bin_size, characteristic, state);
|
|
for (size_t t = shiftc; t > 0; --t)
|
|
set_value(t - 1, 0, bin_size, characteristic, state);
|
|
}
|
|
|
|
GALOIS_API size_t Galois::_mask(size_t bits, bool side)
|
|
{
|
|
size_t result = 0;
|
|
for(size_t t = 0; t<bits; ++t) result = side?(result<<1)|1:(result>>1)|high_bit;
|
|
return result;
|
|
}
|
|
|
|
GALOIS_API BLOCK Galois::get_value(size_t index, size_t block_size, BLOCK * from)
|
|
{
|
|
// Compute block/sub-block indexing
|
|
size_t upper_bit_size = ((block_size*index)%(8*sizeof(BLOCK)))% block_size;
|
|
size_t upper_block_index = (index*block_size)/(8 * sizeof(BLOCK));
|
|
size_t lower_block_index = ((index - upper_bit_size)*block_size)/ (8 * sizeof(BLOCK));
|
|
|
|
// Boundary disparity check
|
|
if(upper_block_index!=lower_block_index)
|
|
{
|
|
// Get block values
|
|
size_t upper_block = from[upper_block_index] & _mask(upper_bit_size, true);
|
|
size_t lower_block = from[lower_block_index] & _mask(block_size -upper_bit_size, false);
|
|
|
|
// Do alignment
|
|
BLOCK block = (upper_block << (block_size - upper_bit_size)) | (lower_block >> ((sizeof(BLOCK)*8)-upper_bit_size));
|
|
|
|
return block;
|
|
}
|
|
else
|
|
{
|
|
// Passed: no boundary disparity
|
|
size_t shift = (block_size * index) % (8 * sizeof(BLOCK));
|
|
size_t block_index = (block_size * index) / (8 * sizeof(BLOCK));
|
|
|
|
// Get and mask
|
|
return from[block_index] >> shift & _mask(block_size, true);
|
|
}
|
|
}
|
|
|
|
GALOIS_API void Galois::set_value(size_t index, BLOCK value, size_t block_size, BLOCK characteristic, BLOCK * to)
|
|
{
|
|
value = value % characteristic;
|
|
|
|
// Compute block/sub-block indexing
|
|
size_t upper_bit_size = ((block_size*index)%(8*sizeof(BLOCK)))%block_size;
|
|
size_t upper_block_index = (index*block_size)/8;
|
|
size_t lower_block_index = ((index - upper_bit_size)*block_size)/8;
|
|
|
|
// Boundary disparity check
|
|
if(upper_block_index!=lower_block_index)
|
|
{
|
|
// Mask bits
|
|
to[upper_block_index] &= ~_mask(upper_bit_size, true);
|
|
to[lower_block_index] &= ~_mask(block_size - upper_bit_size, false);
|
|
|
|
// Get block values
|
|
to[upper_block_index] |= value >> (block_size - upper_bit_size);
|
|
to[lower_block_index] |= (value & _mask(block_size -upper_bit_size, false)) << ((8 * sizeof(BLOCK)) - (block_size - upper_bit_size));
|
|
}
|
|
else
|
|
{
|
|
// Passed: no boundary disparity
|
|
size_t shift = (block_size * index) % (8 * sizeof(BLOCK));
|
|
size_t block_index = (block_size * index) / (8 * sizeof(BLOCK));
|
|
|
|
// Mask bits
|
|
to[block_index] &= ~(_mask(block_size, true) << shift);
|
|
|
|
// Apply shift
|
|
to[block_index] |= value << shift;
|
|
}
|
|
}
|
|
|
|
GALOIS_API size_t Galois::high_factor(BLOCK * state, size_t state_size, size_t bin_size, bool * noBits)
|
|
{
|
|
if(noBits!=0) *noBits = false;
|
|
for (size_t t = block_count(bin_size, state_size); t > 0; --t)
|
|
if (get_value(t - 1, bin_size, state))
|
|
return t - 1;
|
|
if (noBits != 0) *noBits = true;
|
|
return 0;
|
|
}
|
|
}
|
|
}
|