diff --git a/Client/Program.cs b/Client/Program.cs
index d837f18..b01a823 100644
--- a/Client/Program.cs
+++ b/Client/Program.cs
@@ -8,8 +8,10 @@ namespace Client
{
static void Main(string[] args)
{
- byte[] res = AESFunctions.InvMul(new byte[] { 0b0010_0001 }, new byte[] { 0b0001_1011, 0b0000_0001 });
- byte result = AESFunctions.GF28Mod(12);
+ Galois2 gal = Galois2.FromValue(33);
+ Console.WriteLine(gal.ToString());
+ Console.WriteLine(gal.InvMul().Multiply(gal).ToString());
+
bool connected = false;
AES symCrypto = LoadAES();
diff --git a/RedpilledOuttaCucktown/AES.cs b/RedpilledOuttaCucktown/AES.cs
index 7fb6fbc..aa5304e 100644
--- a/RedpilledOuttaCucktown/AES.cs
+++ b/RedpilledOuttaCucktown/AES.cs
@@ -131,21 +131,6 @@ namespace Tofvesson.Crypto
}
}
-
- ///
- /// Object representation of a Galois Field with characteristic 2
- ///
- public class Galois2
- {
- public static byte[] RijndaelCharacteristic
- { get { return new byte[] { 0b0001_1011, 0b0000_0001 }; } }
-
- protected readonly byte[] value;
- protected readonly byte[] characteristic;
-
- public Galois2(byte[] value, byte[] characteristic) { }
- }
-
public static class AESFunctions
{
// Substitution box generated for all 256 possible input bytes from a part of a state
@@ -269,108 +254,188 @@ namespace Tofvesson.Crypto
new RegularRandomProvider(new Random((int)(new BigInteger(Encoding.UTF8.GetBytes(message)) % int.MaxValue))).GetBytes(new byte[128])
);
-
- // Rijndael helper methods
- private static byte RCON(int i) => i<=0?(byte)0x8d:GF28Mod(i - 1);
+ private static byte RCON(int i) => i<=0?(byte)0x8d:new Galois2(i-1, Galois2.RijndaelIP).ToByteArray()[0];
+ }
- // Finite field arithmetic helper methods
+ ///
+ /// Object representation of a Galois Field with characteristic 2
+ ///
+ public class Galois2
+ {
private static readonly byte[] ZERO = new byte[1] { 0 };
private static readonly byte[] ONE = new byte[1] { 1 };
- public static byte GF28Mod(int pow)
+
+ public static byte[] RijndaelIP
+ { get { return new byte[] { 0b0001_1011, 0b0000_0001 }; } }
+
+ protected readonly byte[] value;
+ protected readonly byte[] ip;
+
+ ///
+ /// Create a new Galois2 instance representing the given polynomial using the given irreducible polynomial. The given value will be reduced if possible
+ ///
+ /// Value to represent
+ /// Irreducible polynomial
+ public Galois2(byte[] value, byte[] ip)
{
- byte[] val = new byte[1+(pow/8)];
- val[pow / 8] |= (byte)(1 << (pow % 8));
- return GF28Mod(val);
+ this.value = _ClipZeroes(_FieldMod(value, this.ip = ip));
}
- private static byte GF28Mod(byte[] value)
+
+ public Galois2(int pow, byte[] ip) : this(_FlipBit(new byte[0], pow), ip)
+ { }
+
+ public Galois2(byte[] value) : this(value, RijndaelIP)
+ { }
+
+ public Galois2(int pow) : this(pow, RijndaelIP)
+ { }
+
+ public static Galois2 FromValue(int value, byte[] ip) => new Galois2(Support.WriteToArray(new byte[4], value, 0), ip);
+ public static Galois2 FromValue(int value) => FromValue(value, Galois2.RijndaelIP);
+
+ public Galois2 Multiply(Galois2 factor) => new Galois2(_Mul(value, factor.value), ip);
+ public Galois2 Add(Galois2 val) => new Galois2(_Add(value, val.value), ip);
+ public Galois2 Subtract(Galois2 val) => new Galois2(_Sub(value, val.value), ip);
+ public Galois2 XOR(Galois2 val) => new Galois2(_XOR(value, val.value), ip);
+
+ ///
+ /// Perform inverse multiplication on this Galois2 object. This is done by performing the extended euclidean algorithm (two-variable linear diophantine equations).
+ ///
+ ///
+ ///
+ public Galois2 InvMul()
+ {
+ if (_ArraysEquals(value, ZERO)) return FromValue(0, ip);
+ Stack factors = new Stack();
+ byte[] val = value;
+ byte[] mod = ip;
+ ModResult res;
+ while (!_ArraysEquals((res = _Mod(val, mod)).rem, ZERO))
+ {
+ factors.Push(res.div);
+ val = mod;
+ mod = res.rem;
+ }
+
+ // Values are not coprime. There is no solution!
+ if (!_ArraysEquals(mod, ONE)) return new Galois2(new byte[0], ip);
+
+ byte[] useful = new byte[1] { 1 };
+ byte[] theOtherOne = factors.Pop();
+ byte[] tmp;
+ while (factors.Count > 0)
+ {
+ tmp = theOtherOne;
+ theOtherOne = _Add(useful, _Mul(theOtherOne, factors.Pop()));
+ useful = tmp;
+ }
+ return new Galois2(useful, ip);
+ }
+
+ public byte[] ToByteArray() => (byte[])value.Clone();
+ public override string ToString()
+ {
+ StringBuilder builder = new StringBuilder();
+ for (int i = _GetFirstSetBit(value); i >= 0; --i)
+ if (_BitAt(value, i))
+ builder.Append("x^").Append(i).Append(" + ");
+ if (builder.Length == 0) builder.Append("0 ");
+ else builder.Remove(builder.Length - 2, 2);
+ builder.Append("(mod ");
+ int j;
+ for(int i = j = _GetFirstSetBit(ip); i>=0; --i)
+ if (_BitAt(ip, i))
+ builder.Append("x^").Append(i).Append(" + ");
+ if (j == -1) builder.Append('0');
+ else builder.Remove(builder.Length - 3, 3);
+
+ return builder.Append(')').ToString();
+ }
+
+ // Overrides
+ public override bool Equals(object obj)
+ {
+ if (obj == null || !(obj is Galois2 || obj is byte[])) return false;
+
+ byte[] val = obj is Galois2 ? ((Galois2)obj).value : (byte[])obj;
+
+ bool cmp = val.Length > value.Length;
+ byte[] bigger = cmp ? val : value;
+ byte[] smaller = cmp ? value : val;
+ for (int i = bigger.Length - 1; i >= 0; --i)
+ if (i >= smaller.Length)
+ {
+ if (bigger[i] != 0) return false;
+ }
+ else if (bigger[i] != smaller[i]) return false;
+
+ // If the value supplied was a byte array, ignore the irreducible prime, otherwise, make sure the irreducible primes are the same
+ return obj is byte[] || ((Galois2)obj).ip.Equals(ip);
+ }
+
+ public override int GetHashCode()
+ {
+ var hashCode = -579181322;
+ hashCode = hashCode * -1521134295 + EqualityComparer.Default.GetHashCode(value);
+ hashCode = hashCode * -1521134295 + EqualityComparer.Default.GetHashCode(ip);
+ return hashCode;
+ }
+
+
+
+ protected static bool _ArraysEquals(byte[] v1, byte[] v2)
+ {
+ bool cmp = v1.Length > v2.Length;
+ byte[] bigger = cmp ? v1 : v2;
+ byte[] smaller = cmp ? v2 : v1;
+ for (int i = bigger.Length - 1; i >= 0; --i)
+ if (i >= smaller.Length)
+ {
+ if (bigger[i] != 0) return false;
+ }
+ else if (bigger[i] != smaller[i]) return false;
+ return true;
+ }
+
+ // Internal methods for certain calculations
+ protected static byte[] _FieldMod(byte[] applyTo, byte[] fieldIP)
{
byte[] CA_l;
- while (GetFirstSetBit(value)>=8) // In GF(2^8), polynomials may not exceed x^7. This means that a value containing a bit representing x^8 or higher is invalid
+ int fsb = _GetFirstSetBit(fieldIP);
+ while (_GetFirstSetBit(applyTo) >= fsb) // In GF(2^8), polynomials may not exceed x^7. This means that a value containing a bit representing x^8 or higher is invalid
{
- CA_l = GetFirstSetBit(value)>=GetFirstSetBit(CA) ? Align(value, (byte[])CA.Clone()) : CA;
+ CA_l = _GetFirstSetBit(applyTo) >= _GetFirstSetBit(fieldIP) ? _Align((byte[])fieldIP.Clone(), applyTo) : fieldIP;
byte[] res = new byte[CA_l.Length];
- for (int i = 0; i < CA_l.Length; ++i) res[i] = (byte)(value[i] ^ CA_l[i]);
- value = ClipZeroes(res);
+ for (int i = 0; i < CA_l.Length; ++i) res[i] = (byte)(applyTo[i] ^ CA_l[i]);
+ applyTo = _ClipZeroes(res);
}
- return value[0];
+ return applyTo;
}
- ///
- /// Performs modulus on a given value by a certain value (mod) over a Galois Field with characteristic 2. This method performs both modulus and division.
- ///
- /// Value to perform modular aithmetic on
- /// Modular value
- /// The result of the polynomial division and the result of the modulus
- private static ModResult Mod(byte[] value, byte[] mod)
- {
- byte[] divRes = new byte[1];
- while (GT(value, mod, true))
- {
- divRes = FlipBit(divRes, GetFirstSetBit(value) - GetFirstSetBit(mod)); // Notes the bit shift in the division tracker
- value = Sub(value, Align(mod, value));
- }
- return new ModResult(divRes, value);
- }
-
- ///
- /// The rijndael finite field uses the irreducible polynomial x^8 + x^4 + x^3 + x^1 + x^0 which can be represented as 0001 0001 1011 (or 0x11B) due to the characteristic of the field.
- /// Because 00011011 is the low byte, it is the first value in the array
- ///
- private static readonly byte[] CA = new byte[] { 0b0001_1011, 0b0000_0001 };
- private static readonly byte[] CA_max = new byte[] { 0b0000_0000, 0b0000_0001 };
- private static byte[] Align(byte[] value, byte[] to) => SHL(value, GetFirstSetBit(to) - GetFirstSetBit(value));
- private static bool NeedsAlignment(byte[] value, byte[] comp) => GetFirstSetBit(value) > GetFirstSetBit(comp);
- private static bool GT(byte[] v1, byte[] v2, bool eq)
- {
- byte[] bigger = v1.Length > v2.Length ? v1 : v2;
- byte[] smaller = v1.Length > v2.Length ? v2 : v1;
- for (int i = bigger.Length-1; i >= 0; --i)
- if (i >= smaller.Length && bigger[i] != 0)
- return bigger == v1;
- else if (i < smaller.Length && bigger[i] != smaller[i])
- return (bigger[i] > smaller[i]) ^ (bigger != v1);
- return eq;
- }
///
/// Remove preceding zero-bytes
///
/// Value to remove preceding zeroes from
/// Truncated value (if truncation was necessary)
- private static byte[] ClipZeroes(byte[] val)
+ protected static byte[] _ClipZeroes(byte[] val)
{
- int i = 0;
- for(int j = val.Length-1; j>=0; --j) if (val[j] != 0) { i = j; break; }
- byte[] res = new byte[i+1];
+ int i = 0;
+ for (int j = val.Length - 1; j >= 0; --j) if (val[j] != 0) { i = j; break; }
+ byte[] res = new byte[i + 1];
Array.Copy(val, res, res.Length);
return res;
}
- ///
- /// Flips the bit at the given binary index in the supplied value. For example, flipping bit 5 in the number 0b0010_0011 would result in 0b0000_0011, whereas flipping index 7 would result in 0b1010_0011.
- ///
- /// Value to manipulate bits of
- /// Index (in bits) of the bit to flip.
- /// An array (may be the same object as the one given) with a bit flipped.
- private static byte[] FlipBit(byte[] value, int bitIndex)
- {
- if (bitIndex >= value.Length * 8)
- {
- byte[] intermediate = new byte[bitIndex/8 + (bitIndex%8==0?0:1)];
- Array.Copy(value, intermediate, value.Length);
- value = intermediate;
- }
- value[bitIndex / 8] ^= (byte) (1 << (bitIndex % 8));
- return value;
- }
+
///
/// Get the bit index of the highest bit. This will get the value of the exponent, i.e. index 8 represents x^8
///
/// Value to get the highest set bit from
/// Index of the highest set bit. -1 if no bits are set
- private static int GetFirstSetBit(byte[] b)
+ protected static int _GetFirstSetBit(byte[] b)
{
for (int i = (b.Length * 8) - 1; i >= 0; --i)
if (b[i / 8] == 0) i -= i % 8; // Speeds up searches through blank bytes
@@ -385,74 +450,31 @@ namespace Tofvesson.Crypto
/// Value to get bit from
/// Bit index to get bit from. (Not byte index)
///
- private static bool BitAt(byte[] value, int index) => (value[index / 8] & (1 << (index % 8))) != 0;
+ protected static bool _BitAt(byte[] value, int index) => (value[index / 8] & (1 << (index % 8))) != 0;
- private static byte ShiftedBitmask(int start)
+ protected static byte _ShiftedBitmask(int start)
{
byte res = 0;
for (int i = start; i > 0; --i) res = (byte)((res >> 1) | 128);
return res;
}
- // Addition, Subtraction and XOR are all equivalent under GF(2^8) due to the modular nature of the field
- private static byte[] Add(byte[] v1, byte[] v2) => XOR(v1, v2);
- private static byte[] Sub(byte[] v1, byte[] v2) => XOR(v1, v2);
- private static byte[] XOR(byte[] v1, byte[] v2)
+
+ protected static byte[] _Align(byte[] value, byte[] to) => _SHL(value, _GetFirstSetBit(to) - _GetFirstSetBit(value));
+ protected static bool _NeedsAlignment(byte[] value, byte[] comp) => _GetFirstSetBit(value) > _GetFirstSetBit(comp);
+ protected static bool _GT(byte[] v1, byte[] v2, bool eq)
{
- bool size = v1.Length > v2.Length;
- byte[] bigger = size ? v1 : v2;
- byte[] smaller = size ? v2 : v1;
- byte[] res = new byte[bigger.Length];
- Array.Copy(bigger, res, bigger.Length);
- for (int i = 0; i < smaller.Length; ++i) res[i] ^= smaller[i];
- return ClipZeroes(res);
+ byte[] bigger = v1.Length > v2.Length ? v1 : v2;
+ byte[] smaller = v1.Length > v2.Length ? v2 : v1;
+ for (int i = bigger.Length - 1; i >= 0; --i)
+ if (i >= smaller.Length && bigger[i] != 0)
+ return bigger == v1;
+ else if (i < smaller.Length && bigger[i] != smaller[i])
+ return (bigger[i] > smaller[i]) ^ (bigger != v1);
+ return eq;
}
- ///
- /// Perform polynomial multiplication under a galois field with characteristic 2
- ///
- /// Factor to multiply
- /// Factor to multiply other value by
- /// The product of the multiplication
- private static byte[] Mul(byte[] value, byte[] by)
- {
- byte[] result = new byte[0];
- for (int i = GetFirstSetBit(by); i >= 0; --i)
- if (BitAt(by, i))
- result = Add(result, SHL(value, i));
- return result;
- }
- ///
- /// Perform inverse multiplication on a given irreducible polynomial. This is done by performing the extended euclidean algorithm (two-variable linear diophantine equations) on the two inputs.
- ///
- ///
- ///
- public static byte[] InvMul(byte[] value, byte[] mod)
- {
- Stack factors = new Stack();
- ModResult res;
- while(!Equals((res = Mod(value, mod)).rem, ZERO))
- {
- factors.Push(res.div);
- value = mod;
- mod = res.rem;
- }
-
- // Values are not coprime. There is no solution!
- if (!Equals(mod, ONE)) return new byte[0];
-
- byte[] useful = new byte[1] { 1 };
- byte[] theOtherOne = factors.Pop();
- byte[] tmp;
- while (factors.Count > 0)
- {
- tmp = theOtherOne;
- theOtherOne = Add(useful, Mul(theOtherOne, factors.Pop()));
- useful = tmp;
- }
- return useful;
- }
///
/// Shifts bit in the array by 'shift' bits to the left. This means that 0b0010_0000_1000_1111 shited by 2 becomes 0b1000_0010_0011_1100.
@@ -461,44 +483,98 @@ namespace Tofvesson.Crypto
///
///
///
- private static byte[] SHL(byte[] value, int shift)
+ protected static byte[] _SHL(byte[] value, int shift)
{
int set = shift / 8;
int sub = shift % 8;
- byte bm = ShiftedBitmask(sub);
- byte ibm = (byte) ~bm;
+ byte bm = _ShiftedBitmask(sub);
+ byte ibm = (byte)~bm;
byte carry = 0;
- int fsb1 = GetFirstSetBit(value);
+ int fsb1 = _GetFirstSetBit(value);
if (fsb1 == -1) return value;
byte fsb = (byte)(fsb1 % 8);
- byte[] create = new byte[value.Length + set + (fsb + sub >= 7 ? 1: 0)];
- for(int i = set; i= 7 ? 1 : 0)];
+ for (int i = set; i - set < value.Length; ++i)
{
create[i] = (byte)(((value[i - set] & ibm) << sub) | carry);
- carry = (byte)((value[i - set] & bm) >> (8-sub));
+ carry = (byte)((value[i - set] & bm) >> (8 - sub));
}
create[create.Length - 1] |= carry;
return create;
}
- private static bool Equals(byte[] v1, byte[] v2)
+
+ ///
+ /// Flips the bit at the given binary index in the supplied value. For example, flipping bit 5 in the number 0b0010_0011 would result in 0b0000_0011, whereas flipping index 7 would result in 0b1010_0011.
+ ///
+ /// Value to manipulate bits of
+ /// Index (in bits) of the bit to flip.
+ /// An array (may be the same object as the one given) with a bit flipped.
+ protected static byte[] _FlipBit(byte[] value, int bitIndex)
{
- bool cmp = v1.Length > v2.Length;
- byte[] bigger = cmp ? v1 : v2;
- byte[] smaller = cmp ? v2 : v1;
- for (int i = bigger.Length-1; i >= 0; --i)
- if (i >= smaller.Length)
- {
- if (bigger[i] != 0) return false;
- }
- else if (bigger[i] != smaller[i]) return false;
- return true;
+ if (bitIndex >= value.Length * 8)
+ {
+ byte[] intermediate = new byte[(bitIndex / 8) + 1];
+ Array.Copy(value, intermediate, value.Length);
+ value = intermediate;
+ }
+ value[bitIndex / 8] ^= (byte)(1 << (bitIndex % 8));
+ return value;
+ }
+
+
+
+
+ // Addition, Subtraction and XOR are all equivalent under GF(2^8) due to the modular nature of the field
+ protected static byte[] _Add(byte[] v1, byte[] v2) => _XOR(v1, v2);
+ protected static byte[] _Sub(byte[] v1, byte[] v2) => _XOR(v1, v2);
+ protected static byte[] _XOR(byte[] v1, byte[] v2)
+ {
+ bool size = v1.Length > v2.Length;
+ byte[] bigger = size ? v1 : v2;
+ byte[] smaller = size ? v2 : v1;
+ byte[] res = new byte[bigger.Length];
+ Array.Copy(bigger, res, bigger.Length);
+ for (int i = 0; i < smaller.Length; ++i) res[i] ^= smaller[i];
+ return _ClipZeroes(res);
+ }
+
+ ///
+ /// Perform polynomial multiplication under a galois field with characteristic 2
+ ///
+ /// Factor to multiply
+ /// Factor to multiply other value by
+ /// The product of the multiplication
+ protected static byte[] _Mul(byte[] value, byte[] by)
+ {
+ byte[] result = new byte[0];
+ for (int i = _GetFirstSetBit(by); i >= 0; --i)
+ if (_BitAt(by, i))
+ result = _Add(result, _SHL(value, i));
+ return result;
+ }
+
+ ///
+ /// Performs modulus on a given value by a certain value (mod) over a Galois Field with characteristic 2. This method performs both modulus and division.
+ ///
+ /// Value to perform modular aithmetic on
+ /// Modular value
+ /// The result of the polynomial division and the result of the modulus
+ protected static ModResult _Mod(byte[] value, byte[] mod)
+ {
+ byte[] divRes = new byte[1];
+ while (_GT(value, mod, true))
+ {
+ divRes = _FlipBit(divRes, _GetFirstSetBit(value) - _GetFirstSetBit(mod)); // Notes the bit shift in the division tracker
+ value = _Sub(value, _Align(mod, value));
+ }
+ return new ModResult(divRes, value);
}
///
/// Used to store the result of a polynomial division/modulus in GF(2^m)
///
- private struct ModResult
+ protected struct ModResult
{
public ModResult(byte[] div, byte[] rem)
{