using System; using System.Collections.Generic; using System.IO; using System.Security.Cryptography; using System.Text; namespace Tofvesson.Crypto { public sealed class AES { public static readonly byte[] DEFAULT_SALT = new byte[] { 3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5 }; public static readonly Encoding DEFAULT_ENCODING = Encoding.UTF8; public static readonly CryptoPadding DEFAULT_PADDING = new PassthroughPadding(); private const int BUFFER_SIZE = 2048; public byte[] Key { get; private set; } public byte[] IV { get; private set; } public AES() { using (RijndaelManaged r = new RijndaelManaged()) { r.GenerateKey(); r.GenerateIV(); Key = r.Key; IV = r.IV; } if (Key.Length == 0 || IV.Length == 0) throw new SystemException("Invalid parameter length!"); } public AES(byte[] seed, byte[] salt) { var keyGenerator = new Rfc2898DeriveBytes(seed, salt, 300); using (RijndaelManaged r = new RijndaelManaged()) { r.GenerateIV(); Key = keyGenerator.GetBytes(32); IV = r.IV; } if (Key.Length == 0 || IV.Length == 0) throw new SystemException("Invalid parameter length!"); } public static AES Load(byte[] key, byte[] iv) => new AES(key, iv, false); public AES(byte[] seed) : this(seed, DEFAULT_SALT) { } public AES(string password, Encoding e) : this(e.GetBytes(password)) { } public AES(string password) : this(DEFAULT_ENCODING.GetBytes(password), DEFAULT_SALT) { } private AES(byte[] k, byte[] i, bool b) { Key = k; IV = i; if (Key.Length == 0 || IV.Length == 0) throw new SystemException("Invalid parameter length!"); } public byte[] Encrypt(string message) => Encrypt(message, DEFAULT_ENCODING, DEFAULT_PADDING); public byte[] Encrypt(string message, Encoding e, CryptoPadding padding) => Encrypt(e.GetBytes(message), padding); public byte[] Encrypt(byte[] data, CryptoPadding padding) { data = padding.Pad(data); if (data.Length == 0) throw new SystemException("Invalid message length"); byte[] result; using (RijndaelManaged rijAlg = new RijndaelManaged()) { rijAlg.Key = Key; rijAlg.IV = IV; using (MemoryStream msEncrypt = new MemoryStream()) { using (CryptoStream csEncrypt = new CryptoStream(msEncrypt, rijAlg.CreateEncryptor(rijAlg.Key, rijAlg.IV), CryptoStreamMode.Write)) { using (StreamWriter swEncrypt = new StreamWriter(csEncrypt)) { swEncrypt.Write(DEFAULT_ENCODING.GetChars(data)); } result = msEncrypt.ToArray(); } } } return result; } public string DecryptString(byte[] data) => DecryptString(data, DEFAULT_ENCODING, DEFAULT_PADDING); public string DecryptString(byte[] data, Encoding e, CryptoPadding padding) => new string(e.GetChars(Decrypt(data, padding))); public byte[] Decrypt(byte[] data, CryptoPadding padding) { if (data.Length == 0) throw new SystemException("Invalid message length"); List read = new List(); using (RijndaelManaged rijAlg = new RijndaelManaged()) { rijAlg.Key = Key; rijAlg.IV = IV; using (MemoryStream msDecrypt = new MemoryStream(data)) { using (CryptoStream csDecrypt = new CryptoStream(msDecrypt, rijAlg.CreateDecryptor(Key, IV), CryptoStreamMode.Read)) { byte[] buf = new byte[BUFFER_SIZE]; int test; int count; do { count = csDecrypt.Read(buf, 0, buf.Length); if (count == 0) { if ((test = csDecrypt.ReadByte()) == -1) break; read.Add((byte)test); } else for (int i = 0; i < count; ++i) read.Add(buf[i]); } while (true); } } } return padding.Unpad(read.ToArray()); } public void Save(string baseName, bool force = false) { if (force || !File.Exists(baseName + ".key")) File.WriteAllBytes(baseName + ".key", Key); if (force || !File.Exists(baseName + ".iv")) File.WriteAllBytes(baseName + ".iv", IV); } public byte[] Serialize() => Support.SerializeBytes(new byte[][] { Key, IV }); public static AES Deserialize(byte[] message, out int read) { byte[][] output = Support.DeserializeBytes(message, 2); read = output[0].Length + output[1].Length + 8; return new AES(output[0], output[1], false); } public static AES Load(string baseName) { if (!File.Exists(baseName + ".iv") || !File.Exists(baseName + ".key")) throw new SystemException("Required files could not be located"); return new AES(File.ReadAllBytes(baseName + ".key"), File.ReadAllBytes(baseName + ".iv"), false); } } public class Rijndael128 { protected readonly byte[] roundKeys; protected readonly byte[] key; protected readonly byte[] iv; public Rijndael128(string key) { // Derive a proper key var t = DeriveKey(key); this.key = t.Item1; this.iv = t.Item2; // Expand the derived key roundKeys = KeySchedule(this.key, BitMode.Bit128); } protected Rijndael128(byte[] key, byte[] iv) { this.key = key; this.iv = iv; // Expand the derived key roundKeys = KeySchedule(this.key, BitMode.Bit128); } public byte[] EncryptString(string message) => Encrypt(Encoding.UTF8.GetBytes(message)); public string DecryptString(byte[] message, int length) => new string(Encoding.UTF8.GetChars(Decrypt(message, length, false))).Substring(0, length); public byte[] Encrypt(byte[] message) { byte[] result = new byte[message.Length + ((16 - (message.Length % 16))%16)]; Array.Copy(message, result, message.Length); for(int i = 0; i Decrypt(message, messageLength, true); protected byte[] Decrypt(byte[] message, int messageLength, bool doTruncate) { if (message.Length % 16 != 0) throw new SystemException("Invalid encrypted message length!"); byte[] result = new byte[message.Length]; Array.Copy(message, result, message.Length); for (int i = 0; i < result.Length / 16; ++i) Array.Copy(AES128_Decrypt(result.SubArray(i * 16, i * 16 + 16)), 0, result, i * 16, 16); return doTruncate ? result.SubArray(0, messageLength) : result; } protected virtual byte[] AES128_Encrypt(byte[] state) { // Initial round state = AddRoundKey(state, roundKeys, 0); // Rounds 1 - 9 for (int rounds = 1; rounds < 10; ++rounds) { state = ShiftRows(SubBytes(state, false)); if (rounds != 9) state = MixColumns(state, true); state = AddRoundKey(state, roundKeys, rounds * 16); } return state; } protected virtual byte[] AES128_Decrypt(byte[] state) { for (int rounds = 9; rounds > 0; --rounds) { state = AddRoundKey(state, roundKeys, rounds * 16); if (rounds != 9) state = MixColumns(state, false); state = SubBytes(UnShiftRows(state), true); } return AddRoundKey(state, roundKeys, 0); } public void Save(string baseName, bool force = false) { if (force || !File.Exists(baseName + ".key")) File.WriteAllBytes(baseName + ".key", key); if (force || !File.Exists(baseName + ".iv")) File.WriteAllBytes(baseName + ".iv", iv); } public byte[] Serialize() => Support.SerializeBytes(new byte[][] { key, iv }); public static Rijndael128 Deserialize(byte[] message, out int read) { byte[][] output = Support.DeserializeBytes(message, 2); read = output[0].Length + output[1].Length + 8; return new Rijndael128(output[0], output[1]); } public static Rijndael128 Load(string baseName) { if (!File.Exists(baseName + ".iv") || !File.Exists(baseName + ".key")) throw new SystemException("Required files could not be located"); return new Rijndael128(File.ReadAllBytes(baseName + ".key"), File.ReadAllBytes(baseName + ".iv")); } // Internal methods for encryption :) private static uint KSchedCore(uint input, int iteration) { input = Rotate(input); byte[] bytes = Support.WriteToArray(new byte[4], input, 0); for (int i = 0; i < bytes.Length; ++i) bytes[i] = SBox(bytes[i]); bytes[bytes.Length - 1] ^= RCON(iteration); return (uint)Support.ReadInt(bytes, 0); } public enum BitMode { Bit128, Bit192, Bit256 } private static byte[] KeySchedule(byte[] key, BitMode mode) { int n = mode == BitMode.Bit128 ? 16 : mode == BitMode.Bit192 ? 24 : 32; int b = mode == BitMode.Bit128 ? 176 : mode == BitMode.Bit192 ? 208 : 240; byte[] output = new byte[b]; Array.Copy(key, output, n); int rcon_iter = 1; int accruedBytes = n; while (accruedBytes < b) { // Generate 4 new bytes of extended key byte[] t = Support.WriteToArray(new byte[4], KSchedCore((uint)Support.ReadInt(output, accruedBytes - 4), rcon_iter), 0); ++rcon_iter; for (int i = 0; i < 4; ++i) t[i] ^= output[accruedBytes - n + i]; Array.Copy(t, 0, output, accruedBytes, 4); accruedBytes += 4; // Generate 12 new bytes of extended key for (int i = 0; i < 3; ++i) { Array.Copy(output, accruedBytes - 4, t, 0, 4); for (int j = 0; j < 4; ++j) t[j] ^= output[accruedBytes - n + j]; Array.Copy(t, 0, output, accruedBytes, 4); accruedBytes += 4; } // Special processing for 256-bit key schedule if (mode == BitMode.Bit256) { Array.Copy(output, accruedBytes - 4, t, 0, 4); for (int j = 0; j < 4; ++j) t[j] = (byte)(SBox(t[j]) ^ output[accruedBytes - n + j]); Array.Copy(t, 0, output, accruedBytes, 4); accruedBytes += 4; } // Special processing for 192-bit key schedule if (mode != BitMode.Bit128) for (int i = mode == BitMode.Bit192 ? 1 : 2; i >= 0; --i) { Array.Copy(output, accruedBytes - 4, t, 0, 4); for (int j = 0; j < 4; ++j) t[j] ^= output[accruedBytes - n + j]; Array.Copy(t, 0, output, accruedBytes, 4); accruedBytes += 4; } } Console.WriteLine(Support.ArrayToString(output)); return output; } // MixColumns matrix basis. Used for multiplication over the rijndael field private static readonly byte[] mix_matrix = new byte[] { 2, 3, 1, 1 }; private static readonly byte[] unmix_matrix = new byte[] { 14, 11, 13, 9 }; /// /// Rijndael substitution step in the encryption (first thing that happens). This supplies confusion for the algorithm /// /// The value (most likely from the AES state) that should be substituted /// The substituted byte private static byte SBox(byte b) => Affine(new Galois2(new byte[] { b }).InvMul().ToByteArray()[0]); // Inverse SBox-function private static byte ISBox(byte b) => new Galois2(new byte[] { Rffine(b) }).InvMul().ToByteArray()[0]; // Replaces GF(2^8) matrix multiplication for the affine and reverse affine functions private static byte Affine(byte value) => (byte)(value ^ Rot(value, 1) ^ Rot(value, 2) ^ Rot(value, 3) ^ Rot(value, 4) ^ 0b0110_0011); private static byte Rffine(byte value) => (byte)(Rot(value, 1) ^ Rot(value, 3) ^ Rot(value, 6) ^ 0b0000_0101); // Rotate bitss private static byte Rot(byte value, int by) => (byte)((value << by) | (value >> (8 - by))); private delegate byte SBOXFunc(byte b); private static byte[] SubBytes(byte[] state, bool reverse) { SBOXFunc v; if (reverse) v = ISBox; else v = SBox; for (int i = 0; i < state.Length; ++i) state[i] = v(state[i]); return state; } // The AES state is a column-major 4x4 matrix (for AES-128). Demonstrated below are the decimal indices, as would be represented in the state: // 00 04 08 12 // 01 05 09 13 // 02 06 10 14 // 03 07 11 15 // Shiftrows applied to state above: // 00 04 08 12 - No change // 05 09 13 01 - Shifted 1 to the left // 10 14 02 06 - Shifted 2 to the left // 15 03 07 11 - Shifted 3 to the left /// /// Shifts the rows of the column-major matrix /// /// /// The shifted matrix public static byte[] ShiftRows(byte[] state) { for (int i = 1; i < 4; ++i) { uint value = GetRow(state, i); for (int j = 0; j < i; ++j) value = Rotate(value); WriteToRow(value, state, i); } return state; } private static byte[] UnShiftRows(byte[] state) { for (int i = 1; i < 4; ++i) { uint value = GetRow(state, i); for (int j = 3; j >= i; --j) value = Rotate(value); WriteToRow(value, state, i); } return state; } private static void WriteToRow(uint value, byte[] to, int row) { to[row] = (byte)(value & 255); to[row + 4] = (byte)((value >> 8) & 255); to[row + 8] = (byte)((value >> 16) & 255); to[row + 12] = (byte)((value >> 24) & 255); } private static uint GetRow(byte[] from, int row) => (uint)(from[row] | (from[row + 4] << 8) | (from[row + 8] << 16) | (from[row + 12] << 24)); /// /// MixColumns adds diffusion to the algorithm. Performs matrix multiplication under GF(2^8) with the irreducible prime 0x11B (x^8 + x^4 + x^3 + x + 1) /// /// /// A matrix-multiplied and limited state (mixed) private static byte[] MixColumns(byte[] state, bool mix) { byte[] res = new byte[16]; byte[] rowGenerator = mix ? mix_matrix : unmix_matrix; // Simplified matrix multiplication under GF(2^8) for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { for (int k = 0; k < 4; ++k) { int idx = 4 - j; Galois2 g = Galois2.FromValue(state[k + i * 4]); res[j + i * 4] ^= g.Multiply(Galois2.FromValue(rowGenerator[(k + idx) % 4])).ToByteArray()[0]; //int r = ((state[k + i * 4] * (mix_matrix[(k + idx) % 4] & 1)) ^ ((state[k + i * 4] << 1) * ((mix_matrix[(k + idx) % 4]>>1)&1))); //if (r > 0b100011011) r ^= 0b100011011; //res[j + i * 4] ^= (byte) r; } } } return res; } /// /// Introduces the subkey for this round to the state /// /// The state to introduce the roundkey to /// The subkey /// The state where the roundkey has been added private static byte[] AddRoundKey(byte[] state, byte[] subkey, int offset) { for (int i = 0; i < state.Length; ++i) state[i] ^= subkey[i + offset]; return state; } /// /// Rotate bits to the left by 8 bits. This means that, for example, "0F AB 09 16" becomes "AB 09 16 0F" /// /// /// Rotated value private static uint Rotate(uint i) => (uint)(((i >> 24) & 255) | ((i << 8) & ~255)); /// /// KDF for a given input string. /// /// Input string to derive key from /// A key and an IV private static Tuple DeriveKey(string message) { byte[] salt = new CryptoRandomProvider().GetBytes(16); // Get a random 16-byte salt byte[] key = KDF.PBKDF2(KDF.HMAC_SHA1, Encoding.UTF8.GetBytes(message), salt, 4096, 16); // Generate a 16-byte (128-bit) key from salt over 4096 iterations of HMAC-SHA1 return new Tuple(key, salt); } private static byte RCON(int i) => i <= 0 ? (byte)0x8d : new Galois2(i - 1).ToByteArray()[0]; } /// /// Object representation of a Galois Field with characteristic 2 /// public class Galois2 { private static readonly byte[] ZERO = new byte[1] { 0 }; private static readonly byte[] ONE = new byte[1] { 1 }; public static byte[] RijndaelIP { get { return new byte[] { 0b0001_1011, 0b0000_0001 }; } } protected readonly byte[] value; protected readonly byte[] ip; /// /// Create a new Galois2 instance representing the given polynomial using the given irreducible polynomial. The given value will be reduced if possible /// /// Value to represent /// Irreducible polynomial public Galois2(byte[] value, byte[] ip) { this.value = _ClipZeroes(_FieldMod(value, this.ip = ip)); } public Galois2(int pow, byte[] ip) : this(_FlipBit(new byte[0], pow), ip) { } public Galois2(byte[] value) : this(value, RijndaelIP) { } public Galois2(int pow) : this(pow, RijndaelIP) { } public static Galois2 FromValue(int value, byte[] ip) => new Galois2(Support.WriteToArray(new byte[4], value, 0), ip); public static Galois2 FromValue(int value) => FromValue(value, Galois2.RijndaelIP); public Galois2 Multiply(Galois2 factor) => new Galois2(_Mul(value, factor.value), ip); public Galois2 Add(Galois2 val) => new Galois2(_Add(value, val.value), ip); public Galois2 Subtract(Galois2 val) => new Galois2(_Sub(value, val.value), ip); public Galois2 XOR(Galois2 val) => new Galois2(_XOR(value, val.value), ip); /// /// Perform inverse multiplication on this Galois2 object. This is done by performing the extended euclidean algorithm (two-variable linear diophantine equations). /// /// /// public Galois2 InvMul() { if (_ArraysEquals(value, ZERO)) return FromValue(0, ip); Stack factors = new Stack(); byte[] val = value; byte[] mod = ip; ModResult res; while (!_ArraysEquals((res = _Mod(val, mod)).rem, ZERO)) { factors.Push(res.div); val = mod; mod = res.rem; } // Values are not coprime. There is no solution! if (!_ArraysEquals(mod, ONE)) return new Galois2(new byte[0], ip); byte[] useful = new byte[1] { 1 }; byte[] theOtherOne = factors.Pop(); byte[] tmp; while (factors.Count > 0) { tmp = theOtherOne; theOtherOne = _Add(useful, _Mul(theOtherOne, factors.Pop())); useful = tmp; } return new Galois2(useful, ip); } public byte[] ToByteArray() => (byte[])value.Clone(); public override string ToString() { StringBuilder builder = new StringBuilder(); for (int i = _GetFirstSetBit(value); i >= 0; --i) if (_BitAt(value, i)) builder.Append("x^").Append(i).Append(" + "); if (builder.Length == 0) builder.Append("0 "); else builder.Remove(builder.Length - 2, 2); builder.Append("(mod "); int j; for(int i = j = _GetFirstSetBit(ip); i>=0; --i) if (_BitAt(ip, i)) builder.Append("x^").Append(i).Append(" + "); if (j == -1) builder.Append('0'); else builder.Remove(builder.Length - 3, 3); return builder.Append(')').ToString(); } // Overrides public override bool Equals(object obj) { if (obj == null || !(obj is Galois2 || obj is byte[])) return false; byte[] val = obj is Galois2 ? ((Galois2)obj).value : (byte[])obj; bool cmp = val.Length > value.Length; byte[] bigger = cmp ? val : value; byte[] smaller = cmp ? value : val; for (int i = bigger.Length - 1; i >= 0; --i) if (i >= smaller.Length) { if (bigger[i] != 0) return false; } else if (bigger[i] != smaller[i]) return false; // If the value supplied was a byte array, ignore the irreducible prime, otherwise, make sure the irreducible primes are the same return obj is byte[] || ((Galois2)obj).ip.Equals(ip); } public override int GetHashCode() { var hashCode = -579181322; hashCode = hashCode * -1521134295 + EqualityComparer.Default.GetHashCode(value); hashCode = hashCode * -1521134295 + EqualityComparer.Default.GetHashCode(ip); return hashCode; } protected static bool _ArraysEquals(byte[] v1, byte[] v2) { bool cmp = v1.Length > v2.Length; byte[] bigger = cmp ? v1 : v2; byte[] smaller = cmp ? v2 : v1; for (int i = bigger.Length - 1; i >= 0; --i) if (i >= smaller.Length) { if (bigger[i] != 0) return false; } else if (bigger[i] != smaller[i]) return false; return true; } // Internal methods for certain calculations protected static byte[] _FieldMod(byte[] applyTo, byte[] fieldIP) { byte[] CA_l; int fsb = _GetFirstSetBit(fieldIP); while (_GetFirstSetBit(applyTo) >= fsb) // In GF(2^8), polynomials may not exceed x^7. This means that a value containing a bit representing x^8 or higher is invalid { CA_l = _GetFirstSetBit(applyTo) >= _GetFirstSetBit(fieldIP) ? _Align((byte[])fieldIP.Clone(), applyTo) : fieldIP; byte[] res = new byte[CA_l.Length]; for (int i = 0; i < CA_l.Length; ++i) res[i] = (byte)(applyTo[i] ^ CA_l[i]); applyTo = _ClipZeroes(res); } return applyTo; } /// /// Remove preceding zero-bytes /// /// Value to remove preceding zeroes from /// Truncated value (if truncation was necessary) protected static byte[] _ClipZeroes(byte[] val) { int i = 0; for (int j = val.Length - 1; j >= 0; --j) if (val[j] != 0) { i = j; break; } byte[] res = new byte[i + 1]; Array.Copy(val, res, res.Length); return res; } /// /// Get the bit index of the highest bit. This will get the value of the exponent, i.e. index 8 represents x^8 /// /// Value to get the highest set bit from /// Index of the highest set bit. -1 if no bits are set protected static int _GetFirstSetBit(byte[] b) { for (int i = (b.Length * 8) - 1; i >= 0; --i) if (b[i / 8] == 0) i -= i % 8; // Speeds up searches through blank bytes else if ((b[i / 8] & (1 << (i % 8))) != 0) return i; return -1; } /// /// Get the state of a bit in the supplied value. /// /// Value to get bit from /// Bit index to get bit from. (Not byte index) /// protected static bool _BitAt(byte[] value, int index) => (value[index / 8] & (1 << (index % 8))) != 0; protected static byte _ShiftedBitmask(int start) { byte res = 0; for (int i = start; i > 0; --i) res = (byte)((res >> 1) | 128); return res; } protected static byte[] _Align(byte[] value, byte[] to) => _SHL(value, _GetFirstSetBit(to) - _GetFirstSetBit(value)); protected static bool _NeedsAlignment(byte[] value, byte[] comp) => _GetFirstSetBit(value) > _GetFirstSetBit(comp); protected static bool _GT(byte[] v1, byte[] v2, bool eq) { byte[] bigger = v1.Length > v2.Length ? v1 : v2; byte[] smaller = v1.Length > v2.Length ? v2 : v1; for (int i = bigger.Length - 1; i >= 0; --i) if (i >= smaller.Length && bigger[i] != 0) return bigger == v1; else if (i < smaller.Length && bigger[i] != smaller[i]) return (bigger[i] > smaller[i]) ^ (bigger != v1); return eq; } /// /// Shifts bit in the array by 'shift' bits to the left. This means that 0b0010_0000_1000_1111 shited by 2 becomes 0b1000_0010_0011_1100. /// Note: A shift of 0 just acts like a slow value.Clone() /// /// /// /// protected static byte[] _SHL(byte[] value, int shift) { int set = shift / 8; int sub = shift % 8; byte bm = _ShiftedBitmask(sub); byte ibm = (byte)~bm; byte carry = 0; int fsb1 = _GetFirstSetBit(value); if (fsb1 == -1) return value; byte fsb = (byte)(fsb1 % 8); byte[] create = new byte[value.Length + set + (fsb + sub >= 7 ? 1 : 0)]; for (int i = set; i - set < value.Length; ++i) { create[i] = (byte)(((value[i - set] & ibm) << sub) | carry); carry = (byte)((value[i - set] & bm) >> (8 - sub)); } create[create.Length - 1] |= carry; return create; } /// /// Flips the bit at the given binary index in the supplied value. For example, flipping bit 5 in the number 0b0010_0011 would result in 0b0000_0011, whereas flipping index 7 would result in 0b1010_0011. /// /// Value to manipulate bits of /// Index (in bits) of the bit to flip. /// An array (may be the same object as the one given) with a bit flipped. protected static byte[] _FlipBit(byte[] value, int bitIndex) { if (bitIndex >= value.Length * 8) { byte[] intermediate = new byte[(bitIndex / 8) + 1]; Array.Copy(value, intermediate, value.Length); value = intermediate; } value[bitIndex / 8] ^= (byte)(1 << (bitIndex % 8)); return value; } // Addition, Subtraction and XOR are all equivalent under GF(2^8) due to the modular nature of the field protected static byte[] _Add(byte[] v1, byte[] v2) => _XOR(v1, v2); protected static byte[] _Sub(byte[] v1, byte[] v2) => _XOR(v1, v2); protected static byte[] _XOR(byte[] v1, byte[] v2) { bool size = v1.Length > v2.Length; byte[] bigger = size ? v1 : v2; byte[] smaller = size ? v2 : v1; byte[] res = new byte[bigger.Length]; Array.Copy(bigger, res, bigger.Length); for (int i = 0; i < smaller.Length; ++i) res[i] ^= smaller[i]; return _ClipZeroes(res); } /// /// Perform polynomial multiplication under a galois field with characteristic 2 /// /// Factor to multiply /// Factor to multiply other value by /// The product of the multiplication protected static byte[] _Mul(byte[] value, byte[] by) { byte[] result = new byte[0]; for (int i = _GetFirstSetBit(by); i >= 0; --i) if (_BitAt(by, i)) result = _Add(result, _SHL(value, i)); return result; } /// /// Performs modulus on a given value by a certain value (mod) over a Galois Field with characteristic 2. This method performs both modulus and division. /// /// Value to perform modular aithmetic on /// Modular value /// The result of the polynomial division and the result of the modulus protected static ModResult _Mod(byte[] value, byte[] mod) { byte[] divRes = new byte[1]; while (_GT(value, mod, true)) { divRes = _FlipBit(divRes, _GetFirstSetBit(value) - _GetFirstSetBit(mod)); // Notes the bit shift in the division tracker value = _Sub(value, _Align(mod, value)); } return new ModResult(divRes, value); } /// /// Used to store the result of a polynomial division/modulus in GF(2^m) /// protected struct ModResult { public ModResult(byte[] div, byte[] rem) { this.div = div; this.rem = rem; } public byte[] div; public byte[] rem; } } }