using System.Collections.Generic; namespace Tofvesson.Crypto { /* * ----------------------------------------------- * WARNING WARNING WARNING WARNING WARNING WARNING * ----------------------------------------------- * * If you are looking for useful code that is feasibly usable in the application of RSA, you are in the wrong place! * This code is not intended to be executed (despite the stability and functionality). The code featured below is * created with the sole purpose of modelling a C++ representation in a higher language (for simplicity). * * Note: The below model is no longer of any use, as the idea, that this model was to represent a part, of has been scrapped. * * * * Proof-of-concept for a simplified BigInteger to be implemented in C++ in an OpenCL kernel. * This has been opted agains due to the concerns regarding varying hardware implementations what this program should be applicable on. * The implementation would almost surely have been modified to be classless in the OpenCL implementation, but would otherwise follow the model below fairly strictly. */ class Integer { // Some nice constants public static readonly Integer ONE = new Integer(1); public static readonly Integer ZERO = new Integer(); public static readonly Integer MINUS_ONE = new Integer(-1); private List val = new List(); public bool IsNegative { get; private set; } public Integer() { } public Integer(int value) { if ((IsNegative = value < 0)) value *= -1; for (int i = 0; i < 4; ++i) val.Add((byte)((value >> i * 8) & 255)); ClipZeroes(); } public Integer(List l) { val.AddRange(l); } public Integer(Integer i) : this(i.val) { IsNegative = i.IsNegative; } public Integer Add(Integer other) { Integer result = new Integer(this); result._Add(other); return result; } public Integer Sub(Integer other) { Integer result = new Integer(this); result._Sub(other); return result; } // Tests equality public bool Equ(Integer other) { if (IsNegative != other.IsNegative || val.Count!=other.val.Count) return false; for (int i = 0; i < val.Count; ++i) if (val[i] != other.val[i]) return false; return true; } // Tests lack of equality public bool Neq(Integer other) => !Equ(other); // Checks if this is greather than the given value public bool Gre(Integer other) => _Cmp(other, true) == 1; // Performs a greater-than-or-equal-to comparison public bool Grq(Integer other) => _Cmp(other, true) != 0; // Checks if this is less than the given value public bool Let(Integer other) => _Cmp(other, false) == 1; // Performs a less-than-or-equal-to comparison public bool Leq(Integer other) => _Cmp(other, false) != 0; // Performs a numerical comparison based on the "greater than" comparison private int _Cmp(Integer other, bool grt) { // If the other number is less than zero and this is a positive number, this number is larger and vice versa if (other.IsNegative && !IsNegative && other.val.Count != 0) return grt ? 1 : 0; if (IsNegative && !other.IsNegative && val.Count != 0) return grt ? 0 : 1; long l1, l2; long idx = 0; while ((l1=GetNthSetBit(idx, false))==(l2=other.GetNthSetBit(idx, false))) { ++idx; if (l1 == -1) return 2; } return ((l1 > l2 && (!IsNegative == grt)) || ((IsNegative == grt) && l1 < l2)) ? 1 : 0; } private void _Sub(Integer other) { bool neg; if (other.IsNegative ^ IsNegative) // this - (-other) = this + other { neg = IsNegative; IsNegative = false; other.IsNegative = false; _Add(other); other.IsNegative = !neg; IsNegative = neg; return; } if (IsNegative) // -this - (-other) = -this + other = other - this { Integer res = new Integer(other); res.IsNegative = false; this.IsNegative = false; res._Sub(this); IsNegative = res.IsNegative; val = res.val; } else if (Let(other)) // this - other (where other>this) { Integer res = new Integer(other); res._Sub(this); this.IsNegative = true; val = res.val; } else // this - other (where other<=this) { // Get two's complement of the other value Integer tc = new Integer(other); tc.TwosComplement(); tc._Add(this); long idx = tc.GetNthSetBit(0, false); if (idx != -1) tc.val[(int)(idx / 8L)] &= (byte) ~(1 << (int)(idx % 8)); tc.ClipZeroes(); val = tc.val; } } private void _Add(Integer other) { if (other.IsNegative != IsNegative) { if (other.IsNegative) { other.IsNegative = false; _Sub(other); other.IsNegative = true; } else { Integer tmp = new Integer(other); tmp._Sub(this); IsNegative = tmp.IsNegative; val = tmp.val; } return; } bool carry = false; bool greater = other.val.Count > val.Count; int min = greater ? val.Count : other.val.Count; Integer larger = greater ? other : other.val.Count < this.val.Count ? this : null; for(int i = 0; i 255; val[i] = (byte)(res % 256); } if (larger == other) { for(int i = min; i 0 ? "-" : val.Count == 0 ? "0" : ""; for (int i = (val.Count) * 8 - 1; i>=0; --i) s += (val[i / 8] & (1 << (i % 8))) >> (i % 8); return s; } private long GetNthSetBit(long index, bool minFirst) { long target = index+1; for(long l = minFirst?0:(val.Count*8)-1; (minFirst && l=0) ; l += minFirst ? 1 : -1) { if ((val[(int)(l / 8)] & (1 << (int)(l % 8))) != 0 && --target == 0) return l; } return -1; } public int FirstSetBit { get { for (int i = 0; i < val.Count * 8; ++i) if ((val[i / 8] & (1 << (i % 8))) != 0) return i; return -1; } } // Pruning methods private void ClipZeroes() { for (int i = val.Count - 1; i >= 0; --i) if (val[i] == 0) val.RemoveAt(i); else break; } } }