Bump version, sync codebase

This commit is contained in:
Shantanu Jain 2023-03-02 11:27:55 -08:00
parent f5fbc9c5e9
commit ec7c121e38
7 changed files with 35 additions and 7 deletions

View File

@ -2,6 +2,14 @@
This is the changelog for the open source version of tiktoken.
## [v0.3.0]
- Improve performance by 5-20%; thank you to @nistath!
- Add `gpt-3.5-turbo` models to `encoding_for_model`
- Add prefix matching to `encoding_for_model` to better support future model versions
- Fix a bug in the README instructions on extending tiktoken
- Update the set of available encodings
- Add packaging metadata
## [v0.2.0]
- Add ``tiktoken.encoding_for_model`` to get the encoding for a specific model
- Improve portability of caching logic

View File

@ -1,6 +1,6 @@
[package]
name = "tiktoken"
version = "0.2.0"
version = "0.3.0"
edition = "2021"
rust-version = "1.57.0"

View File

@ -30,7 +30,7 @@ Example code using `tiktoken` can be found in the
![image](./perf.svg)
Performance measured on 1GB of text using the GPT-2 tokeniser, using `GPT2TokenizerFast` from
`tokenizers==0.13.2` and `transformers==4.24.0`.
`tokenizers==0.13.2`, `transformers==4.24.0` and `tiktoken==0.2.0`.
## Getting help

View File

@ -1,6 +1,6 @@
[project]
name = "tiktoken"
version = "0.2.0"
version = "0.3.0"
description = "tiktoken is a fast BPE tokeniser for use with OpenAI's models"
readme = "README.md"
license = {file = "LICENSE"}

View File

@ -26,3 +26,5 @@ def test_encoding_for_model():
assert enc.name == "p50k_base"
enc = tiktoken.encoding_for_model("text-davinci-edit-001")
assert enc.name == "p50k_edit"
enc = tiktoken.encoding_for_model("gpt-3.5-turbo-0301")
assert enc.name == "cl100k_base"

View File

@ -3,8 +3,15 @@ from __future__ import annotations
from .core import Encoding
from .registry import get_encoding
# TODO: this will likely be replaced by an API endpoint
# TODO: these will likely be replaced by an API endpoint
MODEL_PREFIX_TO_ENCODING: dict[str, str] = {
# chat
"gpt-3.5-turbo-": "cl100k_base" # e.g, gpt-3.5-turbo-0301, -0401, etc.
}
MODEL_TO_ENCODING: dict[str, str] = {
# chat
"gpt-3.5-turbo": "cl100k_base",
# text
"text-davinci-003": "p50k_base",
"text-davinci-002": "p50k_base",
@ -45,11 +52,22 @@ MODEL_TO_ENCODING: dict[str, str] = {
def encoding_for_model(model_name: str) -> Encoding:
try:
"""Returns the encoding used by a model."""
encoding_name = None
if model_name in MODEL_TO_ENCODING:
encoding_name = MODEL_TO_ENCODING[model_name]
except KeyError:
else:
# Check if the model matches a known prefix
# Prefix matching avoids needing library updates for every model version release
# Note that this can match on non-existent models (e.g., gpt-3.5-turbo-FAKE)
for model_prefix, model_encoding_name in MODEL_PREFIX_TO_ENCODING.items():
if model_name.startswith(model_prefix):
return get_encoding(model_encoding_name)
if encoding_name is None:
raise KeyError(
f"Could not automatically map {model_name} to a tokeniser. "
"Please use `tiktok.get_encoding` to explicitly get the tokeniser you expect."
) from None
return get_encoding(encoding_name)

View File

@ -83,6 +83,6 @@ ENCODING_CONSTRUCTORS = {
"gpt2": gpt2,
"r50k_base": r50k_base,
"p50k_base": p50k_base,
"cl100k_base": cl100k_base,
"p50k_edit": p50k_edit,
"cl100k_base": cl100k_base,
}