Added all four Galois Field arithmetic functions. Started converting it all to an object-based implementation
This commit is contained in:
parent
c382ec3697
commit
64bc367eb8
@ -8,6 +8,7 @@ namespace Client
|
||||
{
|
||||
static void Main(string[] args)
|
||||
{
|
||||
byte[] res = AESFunctions.InvMul(new byte[] { 0b0010_0001 }, new byte[] { 0b0001_1011, 0b0000_0001 });
|
||||
byte result = AESFunctions.GF28Mod(12);
|
||||
bool connected = false;
|
||||
|
||||
|
@ -61,7 +61,7 @@ namespace Tofvesson.Crypto
|
||||
{
|
||||
rijAlg.Key = Key;
|
||||
rijAlg.IV = IV;
|
||||
|
||||
|
||||
using (MemoryStream msEncrypt = new MemoryStream())
|
||||
{
|
||||
using (CryptoStream csEncrypt = new CryptoStream(msEncrypt, rijAlg.CreateEncryptor(rijAlg.Key, rijAlg.IV), CryptoStreamMode.Write))
|
||||
@ -132,6 +132,20 @@ namespace Tofvesson.Crypto
|
||||
}
|
||||
|
||||
|
||||
/// <summary>
|
||||
/// Object representation of a Galois Field with characteristic 2
|
||||
/// </summary>
|
||||
public class Galois2
|
||||
{
|
||||
public static byte[] RijndaelCharacteristic
|
||||
{ get { return new byte[] { 0b0001_1011, 0b0000_0001 }; } }
|
||||
|
||||
protected readonly byte[] value;
|
||||
protected readonly byte[] characteristic;
|
||||
|
||||
public Galois2(byte[] value, byte[] characteristic) { }
|
||||
}
|
||||
|
||||
public static class AESFunctions
|
||||
{
|
||||
// Substitution box generated for all 256 possible input bytes from a part of a state
|
||||
@ -160,13 +174,18 @@ namespace Tofvesson.Crypto
|
||||
// MixColumns matrix basis. Used for multiplication over GF(2^8) i.e. mod P(x) where P(x) = x^8 + x^4 + x^3 + x + 1
|
||||
private static readonly byte[] mix_matrix = new byte[] { 2, 3, 1, 1 };
|
||||
|
||||
/// <summary>
|
||||
/// Rijndael substitution step in the encryption (first thing that happens). This supplied confusion for the algorithm
|
||||
/// </summary>
|
||||
/// <param name="state">The AES state</param>
|
||||
/// <returns>The substituted bytes for the given state</returns>
|
||||
public static byte[] SBox(byte[] state)
|
||||
{
|
||||
for (int i = 0; i < state.Length; ++i) state[i] = rijndael_sbox[state[i]];
|
||||
return state;
|
||||
}
|
||||
|
||||
// The AES state is a column-first 4x4 matrix. Demonstrated below are the decimal indices, as would be represented in the state:
|
||||
// The AES state is a column-major 4x4 matrix (for AES-128). Demonstrated below are the decimal indices, as would be represented in the state:
|
||||
// 00 04 08 12
|
||||
// 01 05 09 13
|
||||
// 02 06 10 14
|
||||
@ -177,6 +196,12 @@ namespace Tofvesson.Crypto
|
||||
// 05 09 13 01 - Shifted 1 to the left
|
||||
// 10 14 02 06 - Shifted 2 to the left
|
||||
// 15 03 07 11 - Shifted 3 to the left
|
||||
|
||||
/// <summary>
|
||||
/// Shifts the rows of the column-major matrix
|
||||
/// </summary>
|
||||
/// <param name="state"></param>
|
||||
/// <returns>The shifted matrix</returns>
|
||||
public static byte[] ShiftRows(byte[] state)
|
||||
{
|
||||
for(int i = 1; i<4; ++i)
|
||||
@ -188,7 +213,11 @@ namespace Tofvesson.Crypto
|
||||
return state;
|
||||
}
|
||||
|
||||
// MixColumns provides strong diffusion
|
||||
/// <summary>
|
||||
/// MixColumns adds diffusion to the algorithm. Performs matrix multiplication under GF(2^8) with the irreducible prime 0x11B (x^8 + x^4 + x^3 + x + 1)
|
||||
/// </summary>
|
||||
/// <param name="state"></param>
|
||||
/// <returns>A matrix-multiplied and limited state (mixed)</returns>
|
||||
public static byte[] MixColumns(byte[] state)
|
||||
{
|
||||
byte[] res = new byte[16];
|
||||
@ -210,6 +239,12 @@ namespace Tofvesson.Crypto
|
||||
return res;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Introduces the subkey for this round to the state
|
||||
/// </summary>
|
||||
/// <param name="state">The state to introduce the roundkey to</param>
|
||||
/// <param name="subkey">The subkey</param>
|
||||
/// <returns>The state where the roundkey has been added</returns>
|
||||
public static byte[] AddRoundKey(byte[] state, byte[] subkey)
|
||||
{
|
||||
for (int i = 0; i < state.Length; ++i) state[i] ^= subkey[i];
|
||||
@ -220,21 +255,28 @@ namespace Tofvesson.Crypto
|
||||
/// Rotate bits to the left by 8 bits. This means that, for example, "0F AB 09 16" becomes "AB 09 16 0F"
|
||||
/// </summary>
|
||||
/// <param name="i"></param>
|
||||
/// <returns></returns>
|
||||
/// <returns>Rotated value</returns>
|
||||
public static int Rotate(int i) => ((i >> 24) & 255) & ((i << 8) & ~255);
|
||||
|
||||
/// <summary>
|
||||
/// KDF for a given input string.
|
||||
/// </summary>
|
||||
/// <param name="message">Input string to derive key from</param>
|
||||
/// <returns>A key and an IV</returns>
|
||||
public static Tuple<byte[], byte[]> DeriveKey(string message) =>
|
||||
new Tuple<byte[], byte[]>(
|
||||
new SHA1CryptoServiceProvider().ComputeHash(Encoding.UTF8.GetBytes(message)).ToLength(128),
|
||||
new RegularRandomProvider(new Random((int)(new BigInteger(Encoding.UTF8.GetBytes(message)) % int.MaxValue))).GetBytes(new byte[128])
|
||||
);
|
||||
|
||||
|
||||
|
||||
// Rijndael helper methods
|
||||
private static byte RCON(int i) => i<=0?(byte)0x8d:GF28Mod(i - 1);
|
||||
|
||||
|
||||
// Finite field arithmetic helper methods
|
||||
private static byte RCON(int i) => i<=0?(byte)0x8d:GF28Mod(i - 1);
|
||||
|
||||
private static readonly byte[] ZERO = new byte[1] { 0 };
|
||||
private static readonly byte[] ONE = new byte[1] { 1 };
|
||||
public static byte GF28Mod(int pow)
|
||||
{
|
||||
byte[] val = new byte[1+(pow/8)];
|
||||
@ -244,9 +286,9 @@ namespace Tofvesson.Crypto
|
||||
private static byte GF28Mod(byte[] value)
|
||||
{
|
||||
byte[] CA_l;
|
||||
while (GT(value, CA_max, true))
|
||||
while (GetFirstSetBit(value)>=8) // In GF(2^8), polynomials may not exceed x^7. This means that a value containing a bit representing x^8 or higher is invalid
|
||||
{
|
||||
CA_l = NeedsAlignment(value) ? AlignCA(value) : CA;
|
||||
CA_l = GetFirstSetBit(value)>=GetFirstSetBit(CA) ? Align(value, (byte[])CA.Clone()) : CA;
|
||||
byte[] res = new byte[CA_l.Length];
|
||||
for (int i = 0; i < CA_l.Length; ++i) res[i] = (byte)(value[i] ^ CA_l[i]);
|
||||
value = ClipZeroes(res);
|
||||
@ -255,24 +297,47 @@ namespace Tofvesson.Crypto
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// GF(2^8) uses the irreducible polynomial x^8 + x^4 + x^3 + x^1 + x^0 which can be represented as 0001 0001 1011 due to the characteristic of the field
|
||||
/// Performs modulus on a given value by a certain value (mod) over a Galois Field with characteristic 2. This method performs both modulus and division.
|
||||
/// </summary>
|
||||
/// <param name="value">Value to perform modular aithmetic on</param>
|
||||
/// <param name="mod">Modular value</param>
|
||||
/// <returns>The result of the polynomial division and the result of the modulus</returns>
|
||||
private static ModResult Mod(byte[] value, byte[] mod)
|
||||
{
|
||||
byte[] divRes = new byte[1];
|
||||
while (GT(value, mod, true))
|
||||
{
|
||||
divRes = FlipBit(divRes, GetFirstSetBit(value) - GetFirstSetBit(mod)); // Notes the bit shift in the division tracker
|
||||
value = Sub(value, Align(mod, value));
|
||||
}
|
||||
return new ModResult(divRes, value);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// The rijndael finite field uses the irreducible polynomial x^8 + x^4 + x^3 + x^1 + x^0 which can be represented as 0001 0001 1011 (or 0x11B) due to the characteristic of the field.
|
||||
/// Because 00011011 is the low byte, it is the first value in the array
|
||||
/// </summary>
|
||||
private static readonly byte[] CA = new byte[] { 0b0001_1011, 0b0000_0001 };
|
||||
private static readonly byte[] CA_max = new byte[] { 0b0000_0000, 0b0000_0001 };
|
||||
private static readonly int CA_FSB = 8;
|
||||
private static byte[] AlignCA(byte[] value) => SHL((byte[])CA.Clone(), GetFirstSetBit(value) - CA_FSB);
|
||||
private static bool NeedsAlignment(byte[] b) => b.Length > 1 && GetFirstSetBit(b) > CA_FSB;
|
||||
private static byte[] Align(byte[] value, byte[] to) => SHL(value, GetFirstSetBit(to) - GetFirstSetBit(value));
|
||||
private static bool NeedsAlignment(byte[] value, byte[] comp) => GetFirstSetBit(value) > GetFirstSetBit(comp);
|
||||
private static bool GT(byte[] v1, byte[] v2, bool eq)
|
||||
{
|
||||
byte[] bigger = v1.Length > v2.Length ? v1 : v2;
|
||||
byte[] smaller = v1.Length > v2.Length ? v2 : v1;
|
||||
for (int i = Math.Max(bigger.Length, smaller.Length)-1; i >= 0; --i)
|
||||
for (int i = bigger.Length-1; i >= 0; --i)
|
||||
if (i >= smaller.Length && bigger[i] != 0)
|
||||
return bigger == v1;
|
||||
else if (i < smaller.Length && bigger[i] != smaller[i])
|
||||
return (bigger[i] > smaller[i]) ^ (bigger != v1);
|
||||
return eq;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Remove preceding zero-bytes
|
||||
/// </summary>
|
||||
/// <param name="val">Value to remove preceding zeroes from</param>
|
||||
/// <returns>Truncated value (if truncation was necessary)</returns>
|
||||
private static byte[] ClipZeroes(byte[] val)
|
||||
{
|
||||
int i = 0;
|
||||
@ -282,12 +347,46 @@ namespace Tofvesson.Crypto
|
||||
return res;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Flips the bit at the given binary index in the supplied value. For example, flipping bit 5 in the number 0b0010_0011 would result in 0b0000_0011, whereas flipping index 7 would result in 0b1010_0011.
|
||||
/// </summary>
|
||||
/// <param name="value">Value to manipulate bits of</param>
|
||||
/// <param name="bitIndex">Index (in bits) of the bit to flip.</param>
|
||||
/// <returns>An array (may be the same object as the one given) with a bit flipped.</returns>
|
||||
private static byte[] FlipBit(byte[] value, int bitIndex)
|
||||
{
|
||||
if (bitIndex >= value.Length * 8)
|
||||
{
|
||||
byte[] intermediate = new byte[bitIndex/8 + (bitIndex%8==0?0:1)];
|
||||
Array.Copy(value, intermediate, value.Length);
|
||||
value = intermediate;
|
||||
}
|
||||
value[bitIndex / 8] ^= (byte) (1 << (bitIndex % 8));
|
||||
return value;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Get the bit index of the highest bit. This will get the value of the exponent, i.e. index 8 represents x^8
|
||||
/// </summary>
|
||||
/// <param name="b">Value to get the highest set bit from</param>
|
||||
/// <returns>Index of the highest set bit. -1 if no bits are set</returns>
|
||||
private static int GetFirstSetBit(byte[] b)
|
||||
{
|
||||
for (int i = (b.Length * 8) - 1; i >= 0; --i) if ((b[i / 8] & (1 << (i % 8))) != 0) return i;
|
||||
for (int i = (b.Length * 8) - 1; i >= 0; --i)
|
||||
if (b[i / 8] == 0) i -= i % 8; // Speeds up searches through blank bytes
|
||||
else if ((b[i / 8] & (1 << (i % 8))) != 0)
|
||||
return i;
|
||||
return -1;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Get the state of a bit in the supplied value.
|
||||
/// </summary>
|
||||
/// <param name="value">Value to get bit from</param>
|
||||
/// <param name="index">Bit index to get bit from. (Not byte index)</param>
|
||||
/// <returns></returns>
|
||||
private static bool BitAt(byte[] value, int index) => (value[index / 8] & (1 << (index % 8))) != 0;
|
||||
|
||||
private static byte ShiftedBitmask(int start)
|
||||
{
|
||||
byte res = 0;
|
||||
@ -295,6 +394,73 @@ namespace Tofvesson.Crypto
|
||||
return res;
|
||||
}
|
||||
|
||||
// Addition, Subtraction and XOR are all equivalent under GF(2^8) due to the modular nature of the field
|
||||
private static byte[] Add(byte[] v1, byte[] v2) => XOR(v1, v2);
|
||||
private static byte[] Sub(byte[] v1, byte[] v2) => XOR(v1, v2);
|
||||
private static byte[] XOR(byte[] v1, byte[] v2)
|
||||
{
|
||||
bool size = v1.Length > v2.Length;
|
||||
byte[] bigger = size ? v1 : v2;
|
||||
byte[] smaller = size ? v2 : v1;
|
||||
byte[] res = new byte[bigger.Length];
|
||||
Array.Copy(bigger, res, bigger.Length);
|
||||
for (int i = 0; i < smaller.Length; ++i) res[i] ^= smaller[i];
|
||||
return ClipZeroes(res);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Perform polynomial multiplication under a galois field with characteristic 2
|
||||
/// </summary>
|
||||
/// <param name="value">Factor to multiply</param>
|
||||
/// <param name="by">Factor to multiply other value by</param>
|
||||
/// <returns>The product of the multiplication</returns>
|
||||
private static byte[] Mul(byte[] value, byte[] by)
|
||||
{
|
||||
byte[] result = new byte[0];
|
||||
for (int i = GetFirstSetBit(by); i >= 0; --i)
|
||||
if (BitAt(by, i))
|
||||
result = Add(result, SHL(value, i));
|
||||
return result;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Perform inverse multiplication on a given irreducible polynomial. This is done by performing the extended euclidean algorithm (two-variable linear diophantine equations) on the two inputs.
|
||||
/// </summary>
|
||||
/// <param name="value"></param>
|
||||
/// <returns></returns>
|
||||
public static byte[] InvMul(byte[] value, byte[] mod)
|
||||
{
|
||||
Stack<byte[]> factors = new Stack<byte[]>();
|
||||
ModResult res;
|
||||
while(!Equals((res = Mod(value, mod)).rem, ZERO))
|
||||
{
|
||||
factors.Push(res.div);
|
||||
value = mod;
|
||||
mod = res.rem;
|
||||
}
|
||||
|
||||
// Values are not coprime. There is no solution!
|
||||
if (!Equals(mod, ONE)) return new byte[0];
|
||||
|
||||
byte[] useful = new byte[1] { 1 };
|
||||
byte[] theOtherOne = factors.Pop();
|
||||
byte[] tmp;
|
||||
while (factors.Count > 0)
|
||||
{
|
||||
tmp = theOtherOne;
|
||||
theOtherOne = Add(useful, Mul(theOtherOne, factors.Pop()));
|
||||
useful = tmp;
|
||||
}
|
||||
return useful;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Shifts bit in the array by 'shift' bits to the left. This means that 0b0010_0000_1000_1111 shited by 2 becomes 0b1000_0010_0011_1100.
|
||||
/// Note: A shift of 0 just acts like a slow value.Clone()
|
||||
/// </summary>
|
||||
/// <param name="value"></param>
|
||||
/// <param name="shift"></param>
|
||||
/// <returns></returns>
|
||||
private static byte[] SHL(byte[] value, int shift)
|
||||
{
|
||||
int set = shift / 8;
|
||||
@ -305,8 +471,8 @@ namespace Tofvesson.Crypto
|
||||
int fsb1 = GetFirstSetBit(value);
|
||||
if (fsb1 == -1) return value;
|
||||
byte fsb = (byte)(fsb1 % 8);
|
||||
byte[] create = new byte[value.Length + set + (fsb + set >= 7 ? 1: 0)];
|
||||
for(int i = set; i<create.Length; ++i)
|
||||
byte[] create = new byte[value.Length + set + (fsb + sub >= 7 ? 1: 0)];
|
||||
for(int i = set; i<value.Length; ++i)
|
||||
{
|
||||
create[i] = (byte)(((value[i - set] & ibm) << sub) | carry);
|
||||
carry = (byte)((value[i - set] & bm) >> (8-sub));
|
||||
@ -314,5 +480,33 @@ namespace Tofvesson.Crypto
|
||||
create[create.Length - 1] |= carry;
|
||||
return create;
|
||||
}
|
||||
|
||||
private static bool Equals(byte[] v1, byte[] v2)
|
||||
{
|
||||
bool cmp = v1.Length > v2.Length;
|
||||
byte[] bigger = cmp ? v1 : v2;
|
||||
byte[] smaller = cmp ? v2 : v1;
|
||||
for (int i = bigger.Length-1; i >= 0; --i)
|
||||
if (i >= smaller.Length)
|
||||
{
|
||||
if (bigger[i] != 0) return false;
|
||||
}
|
||||
else if (bigger[i] != smaller[i]) return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Used to store the result of a polynomial division/modulus in GF(2^m)
|
||||
/// </summary>
|
||||
private struct ModResult
|
||||
{
|
||||
public ModResult(byte[] div, byte[] rem)
|
||||
{
|
||||
this.div = div;
|
||||
this.rem = rem;
|
||||
}
|
||||
public byte[] div;
|
||||
public byte[] rem;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -47,7 +47,7 @@
|
||||
</ItemGroup>
|
||||
<ItemGroup>
|
||||
<Compile Include="AES.cs" />
|
||||
<Compile Include="Crypto.cs" />
|
||||
<Compile Include="RSA.cs" />
|
||||
<Compile Include="Net.cs" />
|
||||
<Compile Include="Padding.cs" />
|
||||
<Compile Include="Support.cs" />
|
||||
|
@ -1 +0,0 @@
|
||||
Subproject commit 996334583daebe9450069e5d6316d2daf88dd27f
|
Loading…
x
Reference in New Issue
Block a user