513 lines
22 KiB
C#

using System;
using System.Collections.Generic;
using System.IO;
using System.Numerics;
using System.Security.Cryptography;
using System.Text;
namespace Tofvesson.Crypto
{
public sealed class AES
{
public static readonly byte[] DEFAULT_SALT = new byte[] { 3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5 };
public static readonly Encoding DEFAULT_ENCODING = Encoding.UTF8;
public static readonly CryptoPadding DEFAULT_PADDING = new PassthroughPadding();
private const int BUFFER_SIZE = 2048;
public byte[] Key { get; private set; }
public byte[] IV { get; private set; }
public AES() {
using (RijndaelManaged r = new RijndaelManaged()) {
r.GenerateKey();
r.GenerateIV();
Key = r.Key;
IV = r.IV;
}
if (Key.Length == 0 || IV.Length == 0) throw new SystemException("Invalid parameter length!");
}
public AES(byte[] seed, byte[] salt)
{
var keyGenerator = new Rfc2898DeriveBytes(seed, salt, 300);
using (RijndaelManaged r = new RijndaelManaged())
{
r.GenerateIV();
Key = keyGenerator.GetBytes(32);
IV = r.IV;
}
if (Key.Length == 0 || IV.Length == 0) throw new SystemException("Invalid parameter length!");
}
public static AES Load(byte[] key, byte[] iv) => new AES(key, iv, false);
public AES(byte[] seed) : this(seed, DEFAULT_SALT) { }
public AES(string password, Encoding e) : this(e.GetBytes(password)) { }
public AES(string password) : this(DEFAULT_ENCODING.GetBytes(password), DEFAULT_SALT) { }
private AES(byte[] k, byte[] i, bool b)
{
Key = k;
IV = i;
if (Key.Length == 0 || IV.Length == 0) throw new SystemException("Invalid parameter length!");
}
public byte[] Encrypt(string message) => Encrypt(message, DEFAULT_ENCODING, DEFAULT_PADDING);
public byte[] Encrypt(string message, Encoding e, CryptoPadding padding) => Encrypt(e.GetBytes(message), padding);
public byte[] Encrypt(byte[] data, CryptoPadding padding)
{
data = padding.Pad(data);
if (data.Length == 0) throw new SystemException("Invalid message length");
byte[] result;
using (RijndaelManaged rijAlg = new RijndaelManaged())
{
rijAlg.Key = Key;
rijAlg.IV = IV;
using (MemoryStream msEncrypt = new MemoryStream())
{
using (CryptoStream csEncrypt = new CryptoStream(msEncrypt, rijAlg.CreateEncryptor(rijAlg.Key, rijAlg.IV), CryptoStreamMode.Write))
{
using (StreamWriter swEncrypt = new StreamWriter(csEncrypt))
{
swEncrypt.Write(DEFAULT_ENCODING.GetChars(data));
}
result = msEncrypt.ToArray();
}
}
}
return result;
}
public string DecryptString(byte[] data) => DecryptString(data, DEFAULT_ENCODING, DEFAULT_PADDING);
public string DecryptString(byte[] data, Encoding e, CryptoPadding padding) => new string(e.GetChars(Decrypt(data, padding)));
public byte[] Decrypt(byte[] data, CryptoPadding padding)
{
if (data.Length == 0) throw new SystemException("Invalid message length");
List<byte> read = new List<byte>();
using (RijndaelManaged rijAlg = new RijndaelManaged())
{
rijAlg.Key = Key;
rijAlg.IV = IV;
using (MemoryStream msDecrypt = new MemoryStream(data))
{
using (CryptoStream csDecrypt = new CryptoStream(msDecrypt, rijAlg.CreateDecryptor(Key, IV), CryptoStreamMode.Read))
{
byte[] buf = new byte[BUFFER_SIZE];
int test;
int count;
do
{
count = csDecrypt.Read(buf, 0, buf.Length);
if (count == 0)
{
if ((test = csDecrypt.ReadByte()) == -1) break;
read.Add((byte)test);
}
else for (int i = 0; i < count; ++i) read.Add(buf[i]);
} while (true);
}
}
}
return padding.Unpad(read.ToArray());
}
public void Save(string baseName, bool force = false)
{
if (force || !File.Exists(baseName + ".key")) File.WriteAllBytes(baseName + ".key", Key);
if (force || !File.Exists(baseName + ".iv")) File.WriteAllBytes(baseName + ".iv", IV);
}
public byte[] Serialize() => Support.SerializeBytes(new byte[][] { Key, IV });
public static AES Deserialize(byte[] message, out int read)
{
byte[][] output = Support.DeserializeBytes(message, 2);
read = output[0].Length + output[1].Length + 8;
return new AES(output[0], output[1], false);
}
public static AES Load(string baseName)
{
if (!File.Exists(baseName + ".iv") || !File.Exists(baseName + ".key")) throw new SystemException("Required files could not be located");
return new AES(File.ReadAllBytes(baseName + ".key"), File.ReadAllBytes(baseName + ".iv"), false);
}
}
/// <summary>
/// Object representation of a Galois Field with characteristic 2
/// </summary>
public class Galois2
{
public static byte[] RijndaelCharacteristic
{ get { return new byte[] { 0b0001_1011, 0b0000_0001 }; } }
protected readonly byte[] value;
protected readonly byte[] characteristic;
public Galois2(byte[] value, byte[] characteristic) { }
}
public static class AESFunctions
{
// Substitution box generated for all 256 possible input bytes from a part of a state
// Generated by getting the multiplicative inverse over GF(2^8) (i.e. the "prime polynomial" x^8 + x^4 + x^3 + x + 1) and applying the affine transformation
// Used to increase diffusion during encryption, but affine is also used to increase confusion by preventing mathematically aimed attacks
private static readonly byte[] rijndael_sbox = new byte[]
{
0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,
0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,
0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,
0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,
0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,
0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,
0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,
0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,
0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,
0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16
};
// MixColumns matrix basis. Used for multiplication over GF(2^8) i.e. mod P(x) where P(x) = x^8 + x^4 + x^3 + x + 1
private static readonly byte[] mix_matrix = new byte[] { 2, 3, 1, 1 };
/// <summary>
/// Rijndael substitution step in the encryption (first thing that happens). This supplied confusion for the algorithm
/// </summary>
/// <param name="state">The AES state</param>
/// <returns>The substituted bytes for the given state</returns>
public static byte[] SBox(byte[] state)
{
for (int i = 0; i < state.Length; ++i) state[i] = rijndael_sbox[state[i]];
return state;
}
// The AES state is a column-major 4x4 matrix (for AES-128). Demonstrated below are the decimal indices, as would be represented in the state:
// 00 04 08 12
// 01 05 09 13
// 02 06 10 14
// 03 07 11 15
// Shiftrows applied to state above:
// 00 04 08 12 - No change
// 05 09 13 01 - Shifted 1 to the left
// 10 14 02 06 - Shifted 2 to the left
// 15 03 07 11 - Shifted 3 to the left
/// <summary>
/// Shifts the rows of the column-major matrix
/// </summary>
/// <param name="state"></param>
/// <returns>The shifted matrix</returns>
public static byte[] ShiftRows(byte[] state)
{
for(int i = 1; i<4; ++i)
{
byte tmp = state[i];
for(int j = 0; j<3; ++j) state[i + j*4] = state[i + ((j + i)%4)*4];
state[i + 12] = tmp;
}
return state;
}
/// <summary>
/// MixColumns adds diffusion to the algorithm. Performs matrix multiplication under GF(2^8) with the irreducible prime 0x11B (x^8 + x^4 + x^3 + x + 1)
/// </summary>
/// <param name="state"></param>
/// <returns>A matrix-multiplied and limited state (mixed)</returns>
public static byte[] MixColumns(byte[] state)
{
byte[] res = new byte[16];
// Simplified matrix multiplication under GF(2^8)
for(int i = 0; i<4; ++i)
{
for(int j = 0; j<4; ++j)
{
for (int k = 0; k < 4; ++k)
{
int idx = 4 - j;
int r = ((state[k + i * 4] * (mix_matrix[(k + idx) % 4] & 1)) ^ ((state[k + i * 4] << 1) * ((mix_matrix[(k + idx) % 4]>>1)&1)));
if (r > 0b100011011) r ^= 0b100011011;
res[j + i * 4] ^= (byte) r;
}
}
}
return res;
}
/// <summary>
/// Introduces the subkey for this round to the state
/// </summary>
/// <param name="state">The state to introduce the roundkey to</param>
/// <param name="subkey">The subkey</param>
/// <returns>The state where the roundkey has been added</returns>
public static byte[] AddRoundKey(byte[] state, byte[] subkey)
{
for (int i = 0; i < state.Length; ++i) state[i] ^= subkey[i];
return state;
}
/// <summary>
/// Rotate bits to the left by 8 bits. This means that, for example, "0F AB 09 16" becomes "AB 09 16 0F"
/// </summary>
/// <param name="i"></param>
/// <returns>Rotated value</returns>
public static int Rotate(int i) => ((i >> 24) & 255) & ((i << 8) & ~255);
/// <summary>
/// KDF for a given input string.
/// </summary>
/// <param name="message">Input string to derive key from</param>
/// <returns>A key and an IV</returns>
public static Tuple<byte[], byte[]> DeriveKey(string message) =>
new Tuple<byte[], byte[]>(
new SHA1CryptoServiceProvider().ComputeHash(Encoding.UTF8.GetBytes(message)).ToLength(128),
new RegularRandomProvider(new Random((int)(new BigInteger(Encoding.UTF8.GetBytes(message)) % int.MaxValue))).GetBytes(new byte[128])
);
// Rijndael helper methods
private static byte RCON(int i) => i<=0?(byte)0x8d:GF28Mod(i - 1);
// Finite field arithmetic helper methods
private static readonly byte[] ZERO = new byte[1] { 0 };
private static readonly byte[] ONE = new byte[1] { 1 };
public static byte GF28Mod(int pow)
{
byte[] val = new byte[1+(pow/8)];
val[pow / 8] |= (byte)(1 << (pow % 8));
return GF28Mod(val);
}
private static byte GF28Mod(byte[] value)
{
byte[] CA_l;
while (GetFirstSetBit(value)>=8) // In GF(2^8), polynomials may not exceed x^7. This means that a value containing a bit representing x^8 or higher is invalid
{
CA_l = GetFirstSetBit(value)>=GetFirstSetBit(CA) ? Align(value, (byte[])CA.Clone()) : CA;
byte[] res = new byte[CA_l.Length];
for (int i = 0; i < CA_l.Length; ++i) res[i] = (byte)(value[i] ^ CA_l[i]);
value = ClipZeroes(res);
}
return value[0];
}
/// <summary>
/// Performs modulus on a given value by a certain value (mod) over a Galois Field with characteristic 2. This method performs both modulus and division.
/// </summary>
/// <param name="value">Value to perform modular aithmetic on</param>
/// <param name="mod">Modular value</param>
/// <returns>The result of the polynomial division and the result of the modulus</returns>
private static ModResult Mod(byte[] value, byte[] mod)
{
byte[] divRes = new byte[1];
while (GT(value, mod, true))
{
divRes = FlipBit(divRes, GetFirstSetBit(value) - GetFirstSetBit(mod)); // Notes the bit shift in the division tracker
value = Sub(value, Align(mod, value));
}
return new ModResult(divRes, value);
}
/// <summary>
/// The rijndael finite field uses the irreducible polynomial x^8 + x^4 + x^3 + x^1 + x^0 which can be represented as 0001 0001 1011 (or 0x11B) due to the characteristic of the field.
/// Because 00011011 is the low byte, it is the first value in the array
/// </summary>
private static readonly byte[] CA = new byte[] { 0b0001_1011, 0b0000_0001 };
private static readonly byte[] CA_max = new byte[] { 0b0000_0000, 0b0000_0001 };
private static byte[] Align(byte[] value, byte[] to) => SHL(value, GetFirstSetBit(to) - GetFirstSetBit(value));
private static bool NeedsAlignment(byte[] value, byte[] comp) => GetFirstSetBit(value) > GetFirstSetBit(comp);
private static bool GT(byte[] v1, byte[] v2, bool eq)
{
byte[] bigger = v1.Length > v2.Length ? v1 : v2;
byte[] smaller = v1.Length > v2.Length ? v2 : v1;
for (int i = bigger.Length-1; i >= 0; --i)
if (i >= smaller.Length && bigger[i] != 0)
return bigger == v1;
else if (i < smaller.Length && bigger[i] != smaller[i])
return (bigger[i] > smaller[i]) ^ (bigger != v1);
return eq;
}
/// <summary>
/// Remove preceding zero-bytes
/// </summary>
/// <param name="val">Value to remove preceding zeroes from</param>
/// <returns>Truncated value (if truncation was necessary)</returns>
private static byte[] ClipZeroes(byte[] val)
{
int i = 0;
for(int j = val.Length-1; j>=0; --j) if (val[j] != 0) { i = j; break; }
byte[] res = new byte[i+1];
Array.Copy(val, res, res.Length);
return res;
}
/// <summary>
/// Flips the bit at the given binary index in the supplied value. For example, flipping bit 5 in the number 0b0010_0011 would result in 0b0000_0011, whereas flipping index 7 would result in 0b1010_0011.
/// </summary>
/// <param name="value">Value to manipulate bits of</param>
/// <param name="bitIndex">Index (in bits) of the bit to flip.</param>
/// <returns>An array (may be the same object as the one given) with a bit flipped.</returns>
private static byte[] FlipBit(byte[] value, int bitIndex)
{
if (bitIndex >= value.Length * 8)
{
byte[] intermediate = new byte[bitIndex/8 + (bitIndex%8==0?0:1)];
Array.Copy(value, intermediate, value.Length);
value = intermediate;
}
value[bitIndex / 8] ^= (byte) (1 << (bitIndex % 8));
return value;
}
/// <summary>
/// Get the bit index of the highest bit. This will get the value of the exponent, i.e. index 8 represents x^8
/// </summary>
/// <param name="b">Value to get the highest set bit from</param>
/// <returns>Index of the highest set bit. -1 if no bits are set</returns>
private static int GetFirstSetBit(byte[] b)
{
for (int i = (b.Length * 8) - 1; i >= 0; --i)
if (b[i / 8] == 0) i -= i % 8; // Speeds up searches through blank bytes
else if ((b[i / 8] & (1 << (i % 8))) != 0)
return i;
return -1;
}
/// <summary>
/// Get the state of a bit in the supplied value.
/// </summary>
/// <param name="value">Value to get bit from</param>
/// <param name="index">Bit index to get bit from. (Not byte index)</param>
/// <returns></returns>
private static bool BitAt(byte[] value, int index) => (value[index / 8] & (1 << (index % 8))) != 0;
private static byte ShiftedBitmask(int start)
{
byte res = 0;
for (int i = start; i > 0; --i) res = (byte)((res >> 1) | 128);
return res;
}
// Addition, Subtraction and XOR are all equivalent under GF(2^8) due to the modular nature of the field
private static byte[] Add(byte[] v1, byte[] v2) => XOR(v1, v2);
private static byte[] Sub(byte[] v1, byte[] v2) => XOR(v1, v2);
private static byte[] XOR(byte[] v1, byte[] v2)
{
bool size = v1.Length > v2.Length;
byte[] bigger = size ? v1 : v2;
byte[] smaller = size ? v2 : v1;
byte[] res = new byte[bigger.Length];
Array.Copy(bigger, res, bigger.Length);
for (int i = 0; i < smaller.Length; ++i) res[i] ^= smaller[i];
return ClipZeroes(res);
}
/// <summary>
/// Perform polynomial multiplication under a galois field with characteristic 2
/// </summary>
/// <param name="value">Factor to multiply</param>
/// <param name="by">Factor to multiply other value by</param>
/// <returns>The product of the multiplication</returns>
private static byte[] Mul(byte[] value, byte[] by)
{
byte[] result = new byte[0];
for (int i = GetFirstSetBit(by); i >= 0; --i)
if (BitAt(by, i))
result = Add(result, SHL(value, i));
return result;
}
/// <summary>
/// Perform inverse multiplication on a given irreducible polynomial. This is done by performing the extended euclidean algorithm (two-variable linear diophantine equations) on the two inputs.
/// </summary>
/// <param name="value"></param>
/// <returns></returns>
public static byte[] InvMul(byte[] value, byte[] mod)
{
Stack<byte[]> factors = new Stack<byte[]>();
ModResult res;
while(!Equals((res = Mod(value, mod)).rem, ZERO))
{
factors.Push(res.div);
value = mod;
mod = res.rem;
}
// Values are not coprime. There is no solution!
if (!Equals(mod, ONE)) return new byte[0];
byte[] useful = new byte[1] { 1 };
byte[] theOtherOne = factors.Pop();
byte[] tmp;
while (factors.Count > 0)
{
tmp = theOtherOne;
theOtherOne = Add(useful, Mul(theOtherOne, factors.Pop()));
useful = tmp;
}
return useful;
}
/// <summary>
/// Shifts bit in the array by 'shift' bits to the left. This means that 0b0010_0000_1000_1111 shited by 2 becomes 0b1000_0010_0011_1100.
/// Note: A shift of 0 just acts like a slow value.Clone()
/// </summary>
/// <param name="value"></param>
/// <param name="shift"></param>
/// <returns></returns>
private static byte[] SHL(byte[] value, int shift)
{
int set = shift / 8;
int sub = shift % 8;
byte bm = ShiftedBitmask(sub);
byte ibm = (byte) ~bm;
byte carry = 0;
int fsb1 = GetFirstSetBit(value);
if (fsb1 == -1) return value;
byte fsb = (byte)(fsb1 % 8);
byte[] create = new byte[value.Length + set + (fsb + sub >= 7 ? 1: 0)];
for(int i = set; i<value.Length; ++i)
{
create[i] = (byte)(((value[i - set] & ibm) << sub) | carry);
carry = (byte)((value[i - set] & bm) >> (8-sub));
}
create[create.Length - 1] |= carry;
return create;
}
private static bool Equals(byte[] v1, byte[] v2)
{
bool cmp = v1.Length > v2.Length;
byte[] bigger = cmp ? v1 : v2;
byte[] smaller = cmp ? v2 : v1;
for (int i = bigger.Length-1; i >= 0; --i)
if (i >= smaller.Length)
{
if (bigger[i] != 0) return false;
}
else if (bigger[i] != smaller[i]) return false;
return true;
}
/// <summary>
/// Used to store the result of a polynomial division/modulus in GF(2^m)
/// </summary>
private struct ModResult
{
public ModResult(byte[] div, byte[] rem)
{
this.div = div;
this.rem = rem;
}
public byte[] div;
public byte[] rem;
}
}
}