Implemented Galois field arithmetic with characteristic 2 as a class

- Retrofitted static methods to an object implementation
This commit is contained in:
Gabriel Tofvesson 2018-02-20 23:00:39 +01:00
parent 64bc367eb8
commit 0ef7beaffb
2 changed files with 243 additions and 165 deletions

View File

@ -8,8 +8,10 @@ namespace Client
{
static void Main(string[] args)
{
byte[] res = AESFunctions.InvMul(new byte[] { 0b0010_0001 }, new byte[] { 0b0001_1011, 0b0000_0001 });
byte result = AESFunctions.GF28Mod(12);
Galois2 gal = Galois2.FromValue(33);
Console.WriteLine(gal.ToString());
Console.WriteLine(gal.InvMul().Multiply(gal).ToString());
bool connected = false;
AES symCrypto = LoadAES();

View File

@ -131,21 +131,6 @@ namespace Tofvesson.Crypto
}
}
/// <summary>
/// Object representation of a Galois Field with characteristic 2
/// </summary>
public class Galois2
{
public static byte[] RijndaelCharacteristic
{ get { return new byte[] { 0b0001_1011, 0b0000_0001 }; } }
protected readonly byte[] value;
protected readonly byte[] characteristic;
public Galois2(byte[] value, byte[] characteristic) { }
}
public static class AESFunctions
{
// Substitution box generated for all 256 possible input bytes from a part of a state
@ -269,108 +254,188 @@ namespace Tofvesson.Crypto
new RegularRandomProvider(new Random((int)(new BigInteger(Encoding.UTF8.GetBytes(message)) % int.MaxValue))).GetBytes(new byte[128])
);
// Rijndael helper methods
private static byte RCON(int i) => i<=0?(byte)0x8d:GF28Mod(i - 1);
private static byte RCON(int i) => i<=0?(byte)0x8d:new Galois2(i-1, Galois2.RijndaelIP).ToByteArray()[0];
}
// Finite field arithmetic helper methods
/// <summary>
/// Object representation of a Galois Field with characteristic 2
/// </summary>
public class Galois2
{
private static readonly byte[] ZERO = new byte[1] { 0 };
private static readonly byte[] ONE = new byte[1] { 1 };
public static byte GF28Mod(int pow)
public static byte[] RijndaelIP
{ get { return new byte[] { 0b0001_1011, 0b0000_0001 }; } }
protected readonly byte[] value;
protected readonly byte[] ip;
/// <summary>
/// Create a new Galois2 instance representing the given polynomial using the given irreducible polynomial. The given value will be reduced if possible
/// </summary>
/// <param name="value">Value to represent</param>
/// <param name="ip">Irreducible polynomial</param>
public Galois2(byte[] value, byte[] ip)
{
byte[] val = new byte[1+(pow/8)];
val[pow / 8] |= (byte)(1 << (pow % 8));
return GF28Mod(val);
this.value = _ClipZeroes(_FieldMod(value, this.ip = ip));
}
private static byte GF28Mod(byte[] value)
public Galois2(int pow, byte[] ip) : this(_FlipBit(new byte[0], pow), ip)
{ }
public Galois2(byte[] value) : this(value, RijndaelIP)
{ }
public Galois2(int pow) : this(pow, RijndaelIP)
{ }
public static Galois2 FromValue(int value, byte[] ip) => new Galois2(Support.WriteToArray(new byte[4], value, 0), ip);
public static Galois2 FromValue(int value) => FromValue(value, Galois2.RijndaelIP);
public Galois2 Multiply(Galois2 factor) => new Galois2(_Mul(value, factor.value), ip);
public Galois2 Add(Galois2 val) => new Galois2(_Add(value, val.value), ip);
public Galois2 Subtract(Galois2 val) => new Galois2(_Sub(value, val.value), ip);
public Galois2 XOR(Galois2 val) => new Galois2(_XOR(value, val.value), ip);
/// <summary>
/// Perform inverse multiplication on this Galois2 object. This is done by performing the extended euclidean algorithm (two-variable linear diophantine equations).
/// </summary>
/// <param name="value"></param>
/// <returns></returns>
public Galois2 InvMul()
{
if (_ArraysEquals(value, ZERO)) return FromValue(0, ip);
Stack<byte[]> factors = new Stack<byte[]>();
byte[] val = value;
byte[] mod = ip;
ModResult res;
while (!_ArraysEquals((res = _Mod(val, mod)).rem, ZERO))
{
factors.Push(res.div);
val = mod;
mod = res.rem;
}
// Values are not coprime. There is no solution!
if (!_ArraysEquals(mod, ONE)) return new Galois2(new byte[0], ip);
byte[] useful = new byte[1] { 1 };
byte[] theOtherOne = factors.Pop();
byte[] tmp;
while (factors.Count > 0)
{
tmp = theOtherOne;
theOtherOne = _Add(useful, _Mul(theOtherOne, factors.Pop()));
useful = tmp;
}
return new Galois2(useful, ip);
}
public byte[] ToByteArray() => (byte[])value.Clone();
public override string ToString()
{
StringBuilder builder = new StringBuilder();
for (int i = _GetFirstSetBit(value); i >= 0; --i)
if (_BitAt(value, i))
builder.Append("x^").Append(i).Append(" + ");
if (builder.Length == 0) builder.Append("0 ");
else builder.Remove(builder.Length - 2, 2);
builder.Append("(mod ");
int j;
for(int i = j = _GetFirstSetBit(ip); i>=0; --i)
if (_BitAt(ip, i))
builder.Append("x^").Append(i).Append(" + ");
if (j == -1) builder.Append('0');
else builder.Remove(builder.Length - 3, 3);
return builder.Append(')').ToString();
}
// Overrides
public override bool Equals(object obj)
{
if (obj == null || !(obj is Galois2 || obj is byte[])) return false;
byte[] val = obj is Galois2 ? ((Galois2)obj).value : (byte[])obj;
bool cmp = val.Length > value.Length;
byte[] bigger = cmp ? val : value;
byte[] smaller = cmp ? value : val;
for (int i = bigger.Length - 1; i >= 0; --i)
if (i >= smaller.Length)
{
if (bigger[i] != 0) return false;
}
else if (bigger[i] != smaller[i]) return false;
// If the value supplied was a byte array, ignore the irreducible prime, otherwise, make sure the irreducible primes are the same
return obj is byte[] || ((Galois2)obj).ip.Equals(ip);
}
public override int GetHashCode()
{
var hashCode = -579181322;
hashCode = hashCode * -1521134295 + EqualityComparer<byte[]>.Default.GetHashCode(value);
hashCode = hashCode * -1521134295 + EqualityComparer<byte[]>.Default.GetHashCode(ip);
return hashCode;
}
protected static bool _ArraysEquals(byte[] v1, byte[] v2)
{
bool cmp = v1.Length > v2.Length;
byte[] bigger = cmp ? v1 : v2;
byte[] smaller = cmp ? v2 : v1;
for (int i = bigger.Length - 1; i >= 0; --i)
if (i >= smaller.Length)
{
if (bigger[i] != 0) return false;
}
else if (bigger[i] != smaller[i]) return false;
return true;
}
// Internal methods for certain calculations
protected static byte[] _FieldMod(byte[] applyTo, byte[] fieldIP)
{
byte[] CA_l;
while (GetFirstSetBit(value)>=8) // In GF(2^8), polynomials may not exceed x^7. This means that a value containing a bit representing x^8 or higher is invalid
int fsb = _GetFirstSetBit(fieldIP);
while (_GetFirstSetBit(applyTo) >= fsb) // In GF(2^8), polynomials may not exceed x^7. This means that a value containing a bit representing x^8 or higher is invalid
{
CA_l = GetFirstSetBit(value)>=GetFirstSetBit(CA) ? Align(value, (byte[])CA.Clone()) : CA;
CA_l = _GetFirstSetBit(applyTo) >= _GetFirstSetBit(fieldIP) ? _Align((byte[])fieldIP.Clone(), applyTo) : fieldIP;
byte[] res = new byte[CA_l.Length];
for (int i = 0; i < CA_l.Length; ++i) res[i] = (byte)(value[i] ^ CA_l[i]);
value = ClipZeroes(res);
for (int i = 0; i < CA_l.Length; ++i) res[i] = (byte)(applyTo[i] ^ CA_l[i]);
applyTo = _ClipZeroes(res);
}
return value[0];
return applyTo;
}
/// <summary>
/// Performs modulus on a given value by a certain value (mod) over a Galois Field with characteristic 2. This method performs both modulus and division.
/// </summary>
/// <param name="value">Value to perform modular aithmetic on</param>
/// <param name="mod">Modular value</param>
/// <returns>The result of the polynomial division and the result of the modulus</returns>
private static ModResult Mod(byte[] value, byte[] mod)
{
byte[] divRes = new byte[1];
while (GT(value, mod, true))
{
divRes = FlipBit(divRes, GetFirstSetBit(value) - GetFirstSetBit(mod)); // Notes the bit shift in the division tracker
value = Sub(value, Align(mod, value));
}
return new ModResult(divRes, value);
}
/// <summary>
/// The rijndael finite field uses the irreducible polynomial x^8 + x^4 + x^3 + x^1 + x^0 which can be represented as 0001 0001 1011 (or 0x11B) due to the characteristic of the field.
/// Because 00011011 is the low byte, it is the first value in the array
/// </summary>
private static readonly byte[] CA = new byte[] { 0b0001_1011, 0b0000_0001 };
private static readonly byte[] CA_max = new byte[] { 0b0000_0000, 0b0000_0001 };
private static byte[] Align(byte[] value, byte[] to) => SHL(value, GetFirstSetBit(to) - GetFirstSetBit(value));
private static bool NeedsAlignment(byte[] value, byte[] comp) => GetFirstSetBit(value) > GetFirstSetBit(comp);
private static bool GT(byte[] v1, byte[] v2, bool eq)
{
byte[] bigger = v1.Length > v2.Length ? v1 : v2;
byte[] smaller = v1.Length > v2.Length ? v2 : v1;
for (int i = bigger.Length-1; i >= 0; --i)
if (i >= smaller.Length && bigger[i] != 0)
return bigger == v1;
else if (i < smaller.Length && bigger[i] != smaller[i])
return (bigger[i] > smaller[i]) ^ (bigger != v1);
return eq;
}
/// <summary>
/// Remove preceding zero-bytes
/// </summary>
/// <param name="val">Value to remove preceding zeroes from</param>
/// <returns>Truncated value (if truncation was necessary)</returns>
private static byte[] ClipZeroes(byte[] val)
protected static byte[] _ClipZeroes(byte[] val)
{
int i = 0;
for(int j = val.Length-1; j>=0; --j) if (val[j] != 0) { i = j; break; }
byte[] res = new byte[i+1];
int i = 0;
for (int j = val.Length - 1; j >= 0; --j) if (val[j] != 0) { i = j; break; }
byte[] res = new byte[i + 1];
Array.Copy(val, res, res.Length);
return res;
}
/// <summary>
/// Flips the bit at the given binary index in the supplied value. For example, flipping bit 5 in the number 0b0010_0011 would result in 0b0000_0011, whereas flipping index 7 would result in 0b1010_0011.
/// </summary>
/// <param name="value">Value to manipulate bits of</param>
/// <param name="bitIndex">Index (in bits) of the bit to flip.</param>
/// <returns>An array (may be the same object as the one given) with a bit flipped.</returns>
private static byte[] FlipBit(byte[] value, int bitIndex)
{
if (bitIndex >= value.Length * 8)
{
byte[] intermediate = new byte[bitIndex/8 + (bitIndex%8==0?0:1)];
Array.Copy(value, intermediate, value.Length);
value = intermediate;
}
value[bitIndex / 8] ^= (byte) (1 << (bitIndex % 8));
return value;
}
/// <summary>
/// Get the bit index of the highest bit. This will get the value of the exponent, i.e. index 8 represents x^8
/// </summary>
/// <param name="b">Value to get the highest set bit from</param>
/// <returns>Index of the highest set bit. -1 if no bits are set</returns>
private static int GetFirstSetBit(byte[] b)
protected static int _GetFirstSetBit(byte[] b)
{
for (int i = (b.Length * 8) - 1; i >= 0; --i)
if (b[i / 8] == 0) i -= i % 8; // Speeds up searches through blank bytes
@ -385,74 +450,31 @@ namespace Tofvesson.Crypto
/// <param name="value">Value to get bit from</param>
/// <param name="index">Bit index to get bit from. (Not byte index)</param>
/// <returns></returns>
private static bool BitAt(byte[] value, int index) => (value[index / 8] & (1 << (index % 8))) != 0;
protected static bool _BitAt(byte[] value, int index) => (value[index / 8] & (1 << (index % 8))) != 0;
private static byte ShiftedBitmask(int start)
protected static byte _ShiftedBitmask(int start)
{
byte res = 0;
for (int i = start; i > 0; --i) res = (byte)((res >> 1) | 128);
return res;
}
// Addition, Subtraction and XOR are all equivalent under GF(2^8) due to the modular nature of the field
private static byte[] Add(byte[] v1, byte[] v2) => XOR(v1, v2);
private static byte[] Sub(byte[] v1, byte[] v2) => XOR(v1, v2);
private static byte[] XOR(byte[] v1, byte[] v2)
protected static byte[] _Align(byte[] value, byte[] to) => _SHL(value, _GetFirstSetBit(to) - _GetFirstSetBit(value));
protected static bool _NeedsAlignment(byte[] value, byte[] comp) => _GetFirstSetBit(value) > _GetFirstSetBit(comp);
protected static bool _GT(byte[] v1, byte[] v2, bool eq)
{
bool size = v1.Length > v2.Length;
byte[] bigger = size ? v1 : v2;
byte[] smaller = size ? v2 : v1;
byte[] res = new byte[bigger.Length];
Array.Copy(bigger, res, bigger.Length);
for (int i = 0; i < smaller.Length; ++i) res[i] ^= smaller[i];
return ClipZeroes(res);
byte[] bigger = v1.Length > v2.Length ? v1 : v2;
byte[] smaller = v1.Length > v2.Length ? v2 : v1;
for (int i = bigger.Length - 1; i >= 0; --i)
if (i >= smaller.Length && bigger[i] != 0)
return bigger == v1;
else if (i < smaller.Length && bigger[i] != smaller[i])
return (bigger[i] > smaller[i]) ^ (bigger != v1);
return eq;
}
/// <summary>
/// Perform polynomial multiplication under a galois field with characteristic 2
/// </summary>
/// <param name="value">Factor to multiply</param>
/// <param name="by">Factor to multiply other value by</param>
/// <returns>The product of the multiplication</returns>
private static byte[] Mul(byte[] value, byte[] by)
{
byte[] result = new byte[0];
for (int i = GetFirstSetBit(by); i >= 0; --i)
if (BitAt(by, i))
result = Add(result, SHL(value, i));
return result;
}
/// <summary>
/// Perform inverse multiplication on a given irreducible polynomial. This is done by performing the extended euclidean algorithm (two-variable linear diophantine equations) on the two inputs.
/// </summary>
/// <param name="value"></param>
/// <returns></returns>
public static byte[] InvMul(byte[] value, byte[] mod)
{
Stack<byte[]> factors = new Stack<byte[]>();
ModResult res;
while(!Equals((res = Mod(value, mod)).rem, ZERO))
{
factors.Push(res.div);
value = mod;
mod = res.rem;
}
// Values are not coprime. There is no solution!
if (!Equals(mod, ONE)) return new byte[0];
byte[] useful = new byte[1] { 1 };
byte[] theOtherOne = factors.Pop();
byte[] tmp;
while (factors.Count > 0)
{
tmp = theOtherOne;
theOtherOne = Add(useful, Mul(theOtherOne, factors.Pop()));
useful = tmp;
}
return useful;
}
/// <summary>
/// Shifts bit in the array by 'shift' bits to the left. This means that 0b0010_0000_1000_1111 shited by 2 becomes 0b1000_0010_0011_1100.
@ -461,44 +483,98 @@ namespace Tofvesson.Crypto
/// <param name="value"></param>
/// <param name="shift"></param>
/// <returns></returns>
private static byte[] SHL(byte[] value, int shift)
protected static byte[] _SHL(byte[] value, int shift)
{
int set = shift / 8;
int sub = shift % 8;
byte bm = ShiftedBitmask(sub);
byte ibm = (byte) ~bm;
byte bm = _ShiftedBitmask(sub);
byte ibm = (byte)~bm;
byte carry = 0;
int fsb1 = GetFirstSetBit(value);
int fsb1 = _GetFirstSetBit(value);
if (fsb1 == -1) return value;
byte fsb = (byte)(fsb1 % 8);
byte[] create = new byte[value.Length + set + (fsb + sub >= 7 ? 1: 0)];
for(int i = set; i<value.Length; ++i)
byte[] create = new byte[value.Length + set + (fsb + sub >= 7 ? 1 : 0)];
for (int i = set; i - set < value.Length; ++i)
{
create[i] = (byte)(((value[i - set] & ibm) << sub) | carry);
carry = (byte)((value[i - set] & bm) >> (8-sub));
carry = (byte)((value[i - set] & bm) >> (8 - sub));
}
create[create.Length - 1] |= carry;
return create;
}
private static bool Equals(byte[] v1, byte[] v2)
/// <summary>
/// Flips the bit at the given binary index in the supplied value. For example, flipping bit 5 in the number 0b0010_0011 would result in 0b0000_0011, whereas flipping index 7 would result in 0b1010_0011.
/// </summary>
/// <param name="value">Value to manipulate bits of</param>
/// <param name="bitIndex">Index (in bits) of the bit to flip.</param>
/// <returns>An array (may be the same object as the one given) with a bit flipped.</returns>
protected static byte[] _FlipBit(byte[] value, int bitIndex)
{
bool cmp = v1.Length > v2.Length;
byte[] bigger = cmp ? v1 : v2;
byte[] smaller = cmp ? v2 : v1;
for (int i = bigger.Length-1; i >= 0; --i)
if (i >= smaller.Length)
{
if (bigger[i] != 0) return false;
}
else if (bigger[i] != smaller[i]) return false;
return true;
if (bitIndex >= value.Length * 8)
{
byte[] intermediate = new byte[(bitIndex / 8) + 1];
Array.Copy(value, intermediate, value.Length);
value = intermediate;
}
value[bitIndex / 8] ^= (byte)(1 << (bitIndex % 8));
return value;
}
// Addition, Subtraction and XOR are all equivalent under GF(2^8) due to the modular nature of the field
protected static byte[] _Add(byte[] v1, byte[] v2) => _XOR(v1, v2);
protected static byte[] _Sub(byte[] v1, byte[] v2) => _XOR(v1, v2);
protected static byte[] _XOR(byte[] v1, byte[] v2)
{
bool size = v1.Length > v2.Length;
byte[] bigger = size ? v1 : v2;
byte[] smaller = size ? v2 : v1;
byte[] res = new byte[bigger.Length];
Array.Copy(bigger, res, bigger.Length);
for (int i = 0; i < smaller.Length; ++i) res[i] ^= smaller[i];
return _ClipZeroes(res);
}
/// <summary>
/// Perform polynomial multiplication under a galois field with characteristic 2
/// </summary>
/// <param name="value">Factor to multiply</param>
/// <param name="by">Factor to multiply other value by</param>
/// <returns>The product of the multiplication</returns>
protected static byte[] _Mul(byte[] value, byte[] by)
{
byte[] result = new byte[0];
for (int i = _GetFirstSetBit(by); i >= 0; --i)
if (_BitAt(by, i))
result = _Add(result, _SHL(value, i));
return result;
}
/// <summary>
/// Performs modulus on a given value by a certain value (mod) over a Galois Field with characteristic 2. This method performs both modulus and division.
/// </summary>
/// <param name="value">Value to perform modular aithmetic on</param>
/// <param name="mod">Modular value</param>
/// <returns>The result of the polynomial division and the result of the modulus</returns>
protected static ModResult _Mod(byte[] value, byte[] mod)
{
byte[] divRes = new byte[1];
while (_GT(value, mod, true))
{
divRes = _FlipBit(divRes, _GetFirstSetBit(value) - _GetFirstSetBit(mod)); // Notes the bit shift in the division tracker
value = _Sub(value, _Align(mod, value));
}
return new ModResult(divRes, value);
}
/// <summary>
/// Used to store the result of a polynomial division/modulus in GF(2^m)
/// </summary>
private struct ModResult
protected struct ModResult
{
public ModResult(byte[] div, byte[] rem)
{